Modeling and performance analysis of microturbine based Distributed Generation system, “a review”

Author(s):  
D. N. Gaonkar ◽  
Sanjeev Nayak
2020 ◽  
Author(s):  
Alper Nabi AKPOLAT ◽  
Erkan Dursun

Abstract Background: Less energy consumption and more efficient use of fossil-fueled technologies are among the sustainable energy targets of modern societies. The essential activities to be achieved under these objectives are to increase the distributed generation structures and increase their applicability. The distributed generation (DG) is a small-scale version of the traditional power grid, which is supported by micro turbines, hydrogen fuel cells, wind turbines, photovoltaic (PV) modules, combine heat and power systems, and energy storage units. Methods: The aim of this research is to detail performance analyze and unit sizing of proton-exchange membrane fuel cell (PEMFC)-based grid-connected distributed generation system with the help of empirical calculations. To this end, we tried to establish the system and analyze the performance of reliable operation of the system with experimental verifications.Results and Conclusions: The results demonstrate the situation of annual production about how much rated power can be generated through the real meteorological data to dispatch the power to the constant variable loads. While, 53.56% of the total energy demand is met by the utility grid, 46.44% of the demand is met by the produced energy i.e., from microgrid. The PEMFC based hybrid microgrid at Marmara University, Faculty of Technology was analyzed in detail in this study. According to the results of the performance analysis, the important points that will be highlighted and will help the researchers working in this field are as follows. Our results are encouraging and can be validated by a larger sample size with the fine weather conditions in terms of the percentage of procurement of energy.


Sign in / Sign up

Export Citation Format

Share Document