reference frame
Recently Published Documents


TOTAL DOCUMENTS

2733
(FIVE YEARS 582)

H-INDEX

78
(FIVE YEARS 9)

2022 ◽  
Vol 206 ◽  
pp. 107781
Author(s):  
Hashim A. Al Hassan ◽  
Thamer Alharbi ◽  
Zhi-Hong Mao ◽  
Brandon M. Grainger

Author(s):  
N. Azahar ◽  
W. A. Wan Aris ◽  
T. A. Musa ◽  
A. H. Omar ◽  
I. A. Musliman

Abstract. Bursa-Wolf model is a common mathematical approach for coordinate transformation practice between two reference frames. For the case of deforming region, the existing reference frame has been experiencing a non-linear shifting over the time due to co-seismic and post seismic occurrences. Imprecise coordinate in the reference frame definition could degrading critical positioning, surveying, and navigation activities. This require a new realization of reference frame and the coordinate transformation linkage is suggested to be developed in relating the new and existing reference frame. This study provides performance of Bursa-Wolf model as coordinate transformation approach for a deforming region that is experiencing non-linear shifting due to the co-seismic and post-seismic events. The Bursa-Wolf were generated from 32 dependent Global Positioning System (GPS) Continuously Operating Reference Stations (CORS) in Malaysia meanwhile another 20 independent neighbouring stations were utilized for assessment purposes. Seven parameters (7p) of Bursa-Wolf were estimated with RMS at ±4.5mm, ±9.2mm and ±2.1mm respectively. The independent stations were classified as internal and external assessment station and the root mean square (RMS) were found at less than 10mm. The internal station has depicted a better RMS in each component which are ±5.1mm, ±6.5mm and ±1.5mm respectively. Meanwhile for external stations RMS in each component are ±6.1mm, ±8.7mm and ±3.5mm respectively. The result shows that Bursa-Wolf model is sufficient to be used as coordinate transformation approach for deforming region.


2021 ◽  
pp. 217-220
Author(s):  
Md. Ashraful Alam ◽  
Atikur Rahman Baizid

Lorentz Transformation is the relationship between two different coordinate frames time and space when one inertial reference frame is relative to another inertial reference frame with traveling at relative speed. In this paper, we have derived the transformation formula for the volume charge density in Geometric Product Lorentz Transformation. The changes of volume charge density of moving frame in terms of that rest frame in Geometric Product Lorentz Transformation at various velocities and angles were studied as well.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 12
Author(s):  
William Stuckey ◽  
Timothy McDevitt ◽  
Michael Silberstein

Quantum information theorists have created axiomatic reconstructions of quantum mechanics (QM) that are very successful at identifying precisely what distinguishes quantum probability theory from classical and more general probability theories in terms of information-theoretic principles. Herein, we show how one such principle, Information Invariance and Continuity, at the foundation of those axiomatic reconstructions, maps to “no preferred reference frame” (NPRF, aka “the relativity principle”) as it pertains to the invariant measurement of Planck’s constant h for Stern-Gerlach (SG) spin measurements. This is in exact analogy to the relativity principle as it pertains to the invariant measurement of the speed of light c at the foundation of special relativity (SR). Essentially, quantum information theorists have extended Einstein’s use of NPRF from the boost invariance of measurements of c to include the SO(3) invariance of measurements of h between different reference frames of mutually complementary spin measurements via the principle of Information Invariance and Continuity. Consequently, the “mystery” of the Bell states is understood to result from conservation per Information Invariance and Continuity between different reference frames of mutually complementary qubit measurements, and this maps to conservation per NPRF in spacetime. If one falsely conflates the relativity principle with the classical theory of SR, then it may seem impossible that the relativity principle resides at the foundation of non-relativisitic QM. In fact, there is nothing inherently classical or quantum about NPRF. Thus, the axiomatic reconstructions of QM have succeeded in producing a principle account of QM that reveals as much about Nature as the postulates of SR.


Sign in / Sign up

Export Citation Format

Share Document