Improvement of Dynamic Voltage Stability in a Resilient Microgrid based on Smart Inverters & SVC

Author(s):  
Luis A. Paredes ◽  
Marcelo G. Molina ◽  
Marcelo Pozo ◽  
Benjamin R. Serrano
Author(s):  
Sahar M. Sadek ◽  
Amal A. Hassan ◽  
Faten H. Fahmy ◽  
Amgad A. El-Deib ◽  
Hosam K.M. Yousef

The intermittent nature of photovoltaic (PV) generation causes the voltage to fluctuate and may lead to instability, especially, in case of high penetration. In this paper, a methodology is proposed to control the reactive power generation of PV-inverters. The objective is to mitigate the voltage fluctuations at the point of common coupling (PCC) resulted from increasing or decreasing the active power output of PV plants which is dependent on solar radiation level. The generic PV-inverter models developed and recommended by the Renewable Energy Modeling Task Force (REMTF) of the Western Electricity Coordinating Council (WECC) is used to analyze the effect of high PV penetration on the dynamic voltage stability of distribution networks. Then, the tested distribution network with the embedded PV plants is modeled and simulated using PSS/E software. Levels of control that are built-in PV-inverters are tested in the case of normal operation and during disturbances. Comparison results show that the most suitable control methodology in case of disturbances and after fault clearance is the local voltage control. While the plant voltage control with coordinated V/Q control is the most preferable control methodology during normal operation.


2019 ◽  
Vol 2019 (16) ◽  
pp. 2514-2519 ◽  
Author(s):  
Guoyun Su ◽  
Long Xu ◽  
Wenjuan Du ◽  
Chen Chen ◽  
Yining Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document