normal operation
Recently Published Documents


TOTAL DOCUMENTS

2100
(FIVE YEARS 821)

H-INDEX

31
(FIVE YEARS 8)

Author(s):  
Mutegi Mbae ◽  
Nnamdi Nwulu

<p>Flexible alternating current transmission system (FACTS) devices are deployed for improving power system’s stability either singly or as a combination. This research investigates hybrid FACTS devices and studies their impact on voltage, small-signal and transient stability simultaneously under various system disturbances. The simulations were done using five FACTS devices-static var compensator (SVC), static synchronous compensator (STATCOM), static synchronous series compensators (SSSC), thyristor controlled series compensator (TCSC) and unified power flow controller (UPFC) in MATLAB’s power system analysis toolbox (PSAT). These five devices were grouped into ten pairs and tested on Kenya’s transmission network under specific contingencies: the loss of a major generating machine and/or transmission line. The UPFC-STATCOM pair performed the best in all the three aspects under study. The settling times were 3 seconds and 3.05 seconds respectively for voltage and rotor angle improvement on the loss of a major generator at normal operation. The same pair gave settling times of 2.11 seconds and 3.12 seconds for voltage and rotor angle stability improvement respectively on the loss of a major transmission line at 140% system loading. From the study, two novel techniques were developed: A performance-based ranking system and classification for FACTS devices.</p>


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 613
Author(s):  
Pablo Venegas ◽  
Eugenio Ivorra ◽  
Mario Ortega ◽  
Idurre Sáez de Ocáriz

The maintenance of industrial equipment extends its useful life, improves its efficiency, reduces the number of failures, and increases the safety of its use. This study proposes a methodology to develop a predictive maintenance tool based on infrared thermographic measures capable of anticipating failures in industrial equipment. The thermal response of selected equipment in normal operation and in controlled induced anomalous operation was analyzed. The characterization of these situations enabled the development of a machine learning system capable of predicting malfunctions. Different options within the available conventional machine learning techniques were analyzed, assessed, and finally selected for electronic equipment maintenance activities. This study provides advances towards the robust application of machine learning combined with infrared thermography and augmented reality for maintenance applications of industrial equipment. The predictive maintenance system finally selected enables automatic quick hand-held thermal inspections using 3D object detection and a pose estimation algorithm, making predictions with an accuracy of 94% at an inference time of 0.006 s.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Cong Gu

Finance, as the core of the modern economy, supports sustained economic growth through financing and distribution. With the continuous development of the market economy, finance plays an increasingly important role in economic development. A new economic and financial phenomenon, known as financial intervention, has emerged in recent years, which has created a series of new problems, promoting the rapid increase both in credit and investment and causing many problems on normal operation of financial bodies. In the long run, it will inevitably affect the stability and soundness of the entire economic and financial system. In order to maximize the effect of financial intervention, in response to the above problems, this article uses a series of US practices in financial intervention as the survey content, combined with the loan data provided by the US government financial intervention department, and mines the data of the general C4.5 algorithm of the decision tree algorithm. Generate a decision tree and convert it into classification rules. Next, we will discover the laws hidden behind the loan data, further discover information that may violate relevant financial policies, provide a reliable basis for financial intervention, and improve the efficiency of financial intervention. Experiments show that the method used in this article can effectively solve the above problems and has certain practicability in fiscal intervention. With stratified sampling, the risky accuracy rate increased by 10%, probably because stratified sampling increased the number of high-risk samples.


2022 ◽  
Author(s):  
Asad Ali Khan ◽  
Omar A Beg ◽  
Yufang Jin ◽  
Sara Ahmed

An explainable intelligent framework for cyber anomaly mitigation of cyber-physical inverter-based systems is presented.<div><br></div><div>Smart inverter-based microgrids essentially constitute an extensive communication layer that makes them vulnerable to cyber anomalies. The distributed cooperative controllers implemented at the secondary control level of such systems exchange information among physical nodes using the cyber layer to meet the control objectives. The cyber anomalies targeting the communication network may distort the normal operation therefore, an effective cyber anomaly mitigation technique using an artificial neural network (ANN) is proposed in this paper. The intelligent anomaly mitigation control is modeled using adynamic recurrent neural network that employs a nonlinear autoregressive network with exogenous inputs. The effects of false data injection to the distributed cooperative controller at the secondary control level are considered. The training data for designing the neural network are generated by multiple simulations of the designed microgrid under various operating conditions using MATLAB/Simulink. The neural network is trained offline and tested online in the simulated microgrid. The proposed technique is applied as secondary voltage and frequency control of distributed cooperative control-based microgrid to regulate the voltage under various operating conditions. The performance of the proposed control technique is verified by injecting various types of false data injection-based cyber anomalies. The proposed ANN-based secondary controller maintained the normal operation of microgrid in the presence of cyber anomalies as demonstrated by real-time simulations on a real-time digital simulator OPAL-RT.<br></div>


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 460
Author(s):  
José Antonio Cebollero ◽  
David Cañete ◽  
Susana Martín-Arroyo ◽  
Miguel García-Gracia ◽  
Helder Leite

Detection of unintentional islanding is critical in microgrids in order to guarantee personal safety and avoid equipment damage. Most islanding detection techniques are based on monitoring and detecting abnormalities in magnitudes such as frequency, voltage, current and power. However, in normal operation, the utility grid has fluctuations in voltage and frequency, and grid codes establish that local generators must remain connected if deviations from the nominal values do not exceed the defined thresholds and ramps. This means that islanding detection methods could not detect islanding if there are fluctuations that do not exceed the grid code requirements, known as the non-detection zone (NDZ). A survey on the benefits of islanding detection techniques is provided, showing the advantages and disadvantages of each one. NDZs size of the most common passive islanding detection methods are calculated and obtained by simulation and compared with the limits obtained by ENTSO-E and islanding standards in the function of grid codes requirements in order to compare the effectiveness of different techniques and the suitability of each one.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 122
Author(s):  
Yang Li ◽  
Fangyuan Ma ◽  
Cheng Ji ◽  
Jingde Wang ◽  
Wei Sun

Feature extraction plays a key role in fault detection methods. Most existing methods focus on comprehensive and accurate feature extraction of normal operation data to achieve better detection performance. However, discriminative features based on historical fault data are usually ignored. Aiming at this point, a global-local marginal discriminant preserving projection (GLMDPP) method is proposed for feature extraction. Considering its comprehensive consideration of global and local features, global-local preserving projection (GLPP) is used to extract the inherent feature of the data. Then, multiple marginal fisher analysis (MMFA) is introduced to extract the discriminative feature, which can better separate normal data from fault data. On the basis of fisher framework, GLPP and MMFA are integrated to extract inherent and discriminative features of the data simultaneously. Furthermore, fault detection methods based on GLMDPP are constructed and applied to the Tennessee Eastman (TE) process. Compared with the PCA and GLPP method, the effectiveness of the proposed method in fault detection is validated with the result of TE process.


2022 ◽  
Author(s):  
Asad Ali Khan

An explainable intelligent framework for cyber anomaly mitigation of cyber-physical inverter-based systems is presented.<div><br></div><div>Smart inverter-based microgrids essentially constitute an extensive communication layer that makes them vulnerable to cyber anomalies. The distributed cooperative controllers implemented at the secondary control level of such systems exchange information among physical nodes using the cyber layer to meet the control objectives. The cyber anomalies targeting the communication network may distort the normal operation therefore, an effective cyber anomaly mitigation technique using an artificial neural network (ANN) is proposed in this paper. The intelligent anomaly mitigation control is modeled using adynamic recurrent neural network that employs a nonlinear autoregressive network with exogenous inputs. The effects of false data injection to the distributed cooperative controller at the secondary control level are considered. The training data for designing the neural network are generated by multiple simulations of the designed microgrid under various operating conditions using MATLAB/Simulink. The neural network is trained offline and tested online in the simulated microgrid. The proposed technique is applied as secondary voltage and frequency control of distributed cooperative control-based microgrid to regulate the voltage under various operating conditions. The performance of the proposed control technique is verified by injecting various types of false data injection-based cyber anomalies. The proposed ANN-based secondary controller maintained the normal operation of microgrid in the presence of cyber anomalies as demonstrated by real-time simulations on a real-time digital simulator OPAL-RT.<br></div>


2022 ◽  
Author(s):  
Haidong WANG ◽  
Chunguang LI ◽  
Suiju LV ◽  
Lulu SONG

Abstract In Northwest China, the sediment concentration of the Yellow River is high. A project to investigate the operation of a pumping station shows that the flow patterns in the forebay and inlet tank are disordered, and there is sediment deposition that endangers the normal operation and safety of the pumping station. To solve this problem, the three-dimensional two-phase water-sediment flow in the forebay of the pumping station is modeled by using fluid simulation software, and diagrams of the sediment volume fraction content and vector distribution in the flow layers of different sections are obtained. Combined with the multiphase flow theory of mixtures and the realizable turbulent kinetic energy equation, the location and formation mechanism of each vortex, as well as the area and degree of sediment deposition in the forebay, are analyzed. The actual engineering and numerical simulation results are compared to verify the accuracy of the simulation. The results show that the main reason for sediment deposition is the high sediment concentration of the Yellow River, but the flow pattern disorder is affected by a specific design defect of the forebay, which makes the sediment deposition worse. The results of this study provide specific guidance and methods for the construction and transformation of the forebay of the pump station in the future; construction to weaken the return area to a certain extent can reduce the degree of sedimentation.


2022 ◽  
Author(s):  
Asad Ali Khan

An explainable intelligent framework for cyber anomaly mitigation of cyber-physical inverter-based systems is presented.<div><br></div><div>Smart inverter-based microgrids essentially constitute an extensive communication layer that makes them vulnerable to cyber anomalies. The distributed cooperative controllers implemented at the secondary control level of such systems exchange information among physical nodes using the cyber layer to meet the control objectives. The cyber anomalies targeting the communication network may distort the normal operation therefore, an effective cyber anomaly mitigation technique using an artificial neural network (ANN) is proposed in this paper. The intelligent anomaly mitigation control is modeled using adynamic recurrent neural network that employs a nonlinear autoregressive network with exogenous inputs. The effects of false data injection to the distributed cooperative controller at the secondary control level are considered. The training data for designing the neural network are generated by multiple simulations of the designed microgrid under various operating conditions using MATLAB/Simulink. The neural network is trained offline and tested online in the simulated microgrid. The proposed technique is applied as secondary voltage and frequency control of distributed cooperative control-based microgrid to regulate the voltage under various operating conditions. The performance of the proposed control technique is verified by injecting various types of false data injection-based cyber anomalies. The proposed ANN-based secondary controller maintained the normal operation of microgrid in the presence of cyber anomalies as demonstrated by real-time simulations on a real-time digital simulator OPAL-RT.<br></div>


Sign in / Sign up

Export Citation Format

Share Document