renewable sources
Recently Published Documents


TOTAL DOCUMENTS

1061
(FIVE YEARS 400)

H-INDEX

42
(FIVE YEARS 8)

Author(s):  
Rajkumari Malemnganbi ◽  
Benjamin A. Shimray

There is a need for non-renewable energy sources in generation of power for almost every domestic and commercial purposes. This source of energy helps in the development of a country. Because of the increasing usage of the fossil fuels and depletion of these resources, our focus has been shifted towards the renewable sources of energy like solar, water and wind. Therefore, in the present scenario, the usage of renewable sources has been increasing rapidly. Selection of a solar power plant (SPP) requires environmental factor, local terrain, and local weather issues. Thus, a large amount of investment is required for installation. Multi-criteria decision making (MCDM) is a method that identifies one in choosing the best sites among the other proposed options. This paper gives a detailed study of optimal ranking of SPP site using analytical hierarchy process (AHP), multiple layer perceptron (MLP) neural network trained with back propagation (BP) algorithm and genetic algorithm (GA). Three SPP sites of India were considered and various important criteria like local weather, geographical location, and environmental factors are included in our study as SPP site selection is a multi-criteria problem. A precise comparison of these three methods is listed in this paper.


2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Asad Muneer ◽  
Faizan Amjad ◽  
Muhammad Waqas Jabbar ◽  
Usama Saleem

This article addresses the issue of power outage while transmitting electric power to consumer’s end. Electricity demand in today’s world has risen sharply where it must be generated not only using conventional fuels, but also from renewable sources in order to meet this demand. In this regard, an automatic switch is being developed that allows switching between sources in such a way that first and foremost, electric power from solar and wind farms is transferred to the consumer or to the general network. It not only resolves the issue of unforeseen blackouts and power outages, but it also ensures that the consumer end is receiving voltage from a stable generating source. This is how the automatic switch will work effectively in the best interests of the consumers.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 370
Author(s):  
John Boland ◽  
Sleiman Farah ◽  
Lei Bai

Accurately forecasting the output of grid connected wind and solar systems is critical to increasing the overall penetration of renewables on the electrical network. This is especially the case in Australia, where there has been a massive increase in solar and wind farms in the last 15 years, as well as in roof top solar, both domestic and commercial. For example, in 2020, 27% of the electricity in Australia was from renewable sources, and in South Australia almost 60% was from wind and solar. In the literature, there has been extensive research reported on solar and wind resource, entailing both point and interval forecasts, but there has been much less focus on the forecasting of output from wind and solar systems. In this review, we canvass both what has been reported and also what gaps remain. In the case of the latter topic, there are numerous aspects that are not well dealt with in the literature. We have added discussion on the value of forecasts, rather than just focusing on forecast skill. Further, we present a section on how to deal with conditionally changing variance, a topic that has little focus in the literature. One other topic may be particularly important in Australia at the moment, but may become more widespread. This is how to deal with the concept of a clear sky output from a solar farm when the field is oversized compared to the inverter capacity, resulting in a plateau for the output.


2022 ◽  
Author(s):  
Paloma Campo Ruano ◽  
José María De Lapuerta Montoya ◽  
Javier García-Germán ◽  
Jesús M. Menéndez Amigo ◽  
Irene Cámara Ruiz

Abstract BackgroundThis paper presents a new-built school that works disconnected from the grid and uses energy from renewable sources. The design is based on a necessary condition from the developer to achieve extremely low energy demands for heating and cooling and total primary energy according to the Passivhaus Plus standard: Furthermore, the total energy consumed can be generated on-site from renewable sources. Through energy efficiency management systems, a very low rate of CO2 emissions are achieved. ResultsIn addition to meeting the requirements established by the Passivhaus accreditation, the strategies achieve high levels of internal “well-being” for students and staff members, as recognised in other environmental certifications. This is possible through a holistic and bioclimatic design principle integrated in architectural design. ConclusionsThe installation’s design solves the main challenge in educational use: to respond to the high variations of occupancy in the classrooms and to guarantee a stable temperature and optimum air quality, but, in addition, minimum energy consumption is achieved, and prioritising passive energy sources (GSHX) overactive sources (heat pumps) employing integrated monitoring systems.The educational component in design is fundamental; the building is conceived as an extra learning tool for the pupils involved in the energy process in the building. This promotes awareness and sensitivity to the environmental challenges ahead.This is the first Spanish building (Figure 1) awarded by the Passive House Institute (2021).


2022 ◽  
pp. 679-718
Author(s):  
Kalsoom Jan ◽  
Md. Akiful Haque ◽  
Shaoqing Cui ◽  
Gregory Reimonn ◽  
Ana Dotan ◽  
...  
Keyword(s):  

Author(s):  
Fernando A. Assis ◽  
Armando M. Leite da Silva ◽  
Leonidas C. Resende ◽  
Rodolfo A.R. Moura ◽  
Marco Aurélio O. Schroeder

2021 ◽  
Vol 4 (4) ◽  
pp. 318-328
Author(s):  
Alla E. Denysova ◽  
Vladimir R. Nikulshin ◽  
Victor V. Wysochin ◽  
Oksana S. Zhaivoron ◽  
Yana V. Solomentseva

The paper considers modeling the efficiency of power system with integration large share of variable renewable sources of energy with the account of climate conditions of Ukraine. The proposed methodology with its position between system planning and dispatch simulation contributes to the field of hybrid energy system models. The idea behind the method allows high spatial and temporal resolution as well as the inclusion of the technical details of the power system and its dispatch. The novelty of this method is the usage of a parametric approach is chosen to analyze different variable renewable sources of energy scenarios, precisely every possible its share and mix. This provides insights on the systematic effects of different resource mixes and may serve as a new approach to the analysis of future power system development. The additional novelty aspect allows the optimization of the design of the technical details of the power system with large variable renewable sources shares to have continuous improvement of its energy efficiency. The energy balance model generator is well suited for the analysis of large share of variable renewable sources integration in the power system. The design of technical details of the power system with large variable renewable sources shares was optimized with the energy balance model. The results of numerical modelling demonstrated that at 80% variable renewable sources of energy share, the overproduction is reduced to 20%, down from over 100 % without grid extensions. With it, the necessary wind and solar capacity decreases. Consequently, the possible achievable variable renewable sources of energy share is increased, assuming the same technical potential. According to the results, a Ukrainian grid would allow to increase the possible variable renewable sources of energy share from 50% to 75%.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
Dalibor Šafařík ◽  
Petra Hlaváčková ◽  
Jakub Michal

In the European Green Deal and the Climate Act, the European Union has committed itself to achieving climate neutrality by 2050. This goal is to be achieved by joint efforts of all economic sectors, including forestry and its downstream sectors. One way to attain this goal is the effective and sustainable use of forest biomass for energy production. This article aims to quantify the potential of forest biomass resources for the production of electrical and thermal energy based on official departmental statistics, the current legal framework for forestry and the environment, and research results in the context of an extreme change in the raw material base due to the ongoing calamity caused by the spread of insect pests in the Czech Republic. This extreme can classify as a significant risk to the security of the energy supply from renewable sources in the event of oversizing new installed energy production from renewable sources. Based on data and calculations, an overall annual volume of dendromass available for energy production in the Czech Republic for the period extending to 2036 was quantified at the value of 13.473 million tons per year. Consequently, it is clear that the overall dendromass resources for energy production in the Czech Republic are not sufficient to achieve the EU’s ambitious objective.


Sign in / Sign up

Export Citation Format

Share Document