Effects of transmission line faults on dynamic voltage stability

Author(s):  
M.A. Yalcin ◽  
M. Turan ◽  
Z. Demir
Author(s):  
Sahar M. Sadek ◽  
Amal A. Hassan ◽  
Faten H. Fahmy ◽  
Amgad A. El-Deib ◽  
Hosam K.M. Yousef

The intermittent nature of photovoltaic (PV) generation causes the voltage to fluctuate and may lead to instability, especially, in case of high penetration. In this paper, a methodology is proposed to control the reactive power generation of PV-inverters. The objective is to mitigate the voltage fluctuations at the point of common coupling (PCC) resulted from increasing or decreasing the active power output of PV plants which is dependent on solar radiation level. The generic PV-inverter models developed and recommended by the Renewable Energy Modeling Task Force (REMTF) of the Western Electricity Coordinating Council (WECC) is used to analyze the effect of high PV penetration on the dynamic voltage stability of distribution networks. Then, the tested distribution network with the embedded PV plants is modeled and simulated using PSS/E software. Levels of control that are built-in PV-inverters are tested in the case of normal operation and during disturbances. Comparison results show that the most suitable control methodology in case of disturbances and after fault clearance is the local voltage control. While the plant voltage control with coordinated V/Q control is the most preferable control methodology during normal operation.


2019 ◽  
Vol 2019 (16) ◽  
pp. 2514-2519 ◽  
Author(s):  
Guoyun Su ◽  
Long Xu ◽  
Wenjuan Du ◽  
Chen Chen ◽  
Yining Ji ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3838
Author(s):  
Kenan Hatipoglu ◽  
Mohammed Olama ◽  
Yaosuo Xue

In this paper, we present a new control technique for sustaining dynamic voltage stability by effective reactive power control and coordination of distributed energy resources (DERs) in microgrids. The proposed control technique is based on model-free control (MFC), which has shown successful operation and improved performance in different domains and applications. This paper presents its first use in the voltage stability of a microgrid setting employing multiple synchronous generator (SG)-based and power electronic (PE)-based DERs. MFC is a computationally efficient, data-driven control technique that does not require modelling of the different components and disturbances in the power system. It is utilized as an online controller to achieve the dynamic voltage stability of a microgrid system under different disturbances and fault conditions. A 21-bus microgrid system fed by multiple DERs is considered as a case study and the overall dynamic voltage stability is investigated using time-domain dynamic simulations. Numerical results show that the proposed MFC provides improvements on the dynamic load bus voltage profiles and requires less computational time as compared to the traditional enhanced microgrid voltage stabilizer (EMGVS) scheme. Due to its simplicity and low computational requirement, MFC can be easily implemented in resource-constrained computing devices such as smart inverters.


Sign in / Sign up

Export Citation Format

Share Document