scholarly journals Why are Proof Complexity Lower Bounds Hard?

Author(s):  
Jan Pich ◽  
Rahul Santhanam
2021 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Dmitry Itsykson ◽  
Alexander Okhotin ◽  
Vsevolod Oparin

The partial string avoidability problem is stated as follows: given a finite set of strings with possible “holes” (wildcard symbols), determine whether there exists a two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this article establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form satisfiability problem, where each clause has infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting proof lines (such as clauses, inequalities, polynomials, etc.). First, it is proved that there is a particular formula that has a short refutation in Resolution with a shift rule but requires classical proofs of exponential size. At the same time, it is shown that exponential lower bounds for classical proof systems can be translated for their shifted versions. Finally, it is shown that superpolynomial lower bounds on the size of shifted proofs would separate NP from PSPACE; a connection to lower bounds on circuit complexity is also established.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 788
Author(s):  
Lan V. Truong ◽  
Jonathan Scarlett

In this paper, we consider techniques for establishing lower bounds on the number of arm pulls for best-arm identification in the multi-armed bandit problem. While a recent divergence-based approach was shown to provide improvements over an older gap-based approach, we show that the latter can be refined to match the former (up to constant factors) in many cases of interest under Bernoulli rewards, including the case that the rewards are bounded away from zero and one. Together with existing upper bounds, this indicates that the divergence-based and gap-based approaches are both effective for establishing sample complexity lower bounds for best-arm identification.


2016 ◽  
Vol 26 (4) ◽  
pp. 628-640 ◽  
Author(s):  
ANER SHALEV

We study the distribution of products of conjugacy classes in finite simple groups, obtaining effective two-step mixing results, which give rise to an approximation to a conjecture of Thompson.Our results, combined with work of Gowers and Viola, also lead to the solution of recent conjectures they posed on interleaved products and related complexity lower bounds, extending their work on the groups SL(2,q) to all (non-abelian) finite simple groups.In particular it follows that, ifGis a finite simple group, andA,B⊆Gtfort⩾ 2 are subsets of fixed positive densities, then, asa= (a1, . . .,at) ∈Aandb= (b1, . . .,bt) ∈Bare chosen uniformly, the interleaved producta•b:=a1b1. . .atbtis almost uniform onG(with quantitative estimates) with respect to the ℓ∞-norm.It also follows that the communication complexity of an old decision problem related to interleaved products ofa,b∈Gtis at least Ω(tlog |G|) whenGis a finite simple group of Lie type of bounded rank, and at least Ω(tlog log |G|) whenGis any finite simple group. Both these bounds are best possible.


Sign in / Sign up

Export Citation Format

Share Document