A fully-pipelined expectation-maximization engine for Gaussian Mixture Models

Author(s):  
Ce Guo ◽  
Haohuan Fu ◽  
Wayne Luk
2003 ◽  
Vol 15 (2) ◽  
pp. 469-485 ◽  
Author(s):  
J. J. Verbeek ◽  
N. Vlassis ◽  
B. Kröse

This article concerns the greedy learning of gaussian mixtures. In the greedy approach, mixture components are inserted into the mixture one aftertheother.We propose a heuristic for searching for the optimal component to insert. In a randomized manner, a set of candidate new components is generated. For each of these candidates, we find the locally optimal new component and insert it into the existing mixture. The resulting algorithm resolves the sensitivity to initialization of state-of-the-art methods, like expectation maximization, and has running time linear in the number of data points and quadratic in the (final) number of mixture components. Due to its greedy nature, the algorithm can be particularly useful when the optimal number of mixture components is unknown. Experimental results comparing the proposed algorithm to other methods on density estimation and texture segmentation are provided.


2016 ◽  
Vol 24 (2) ◽  
pp. 293-317 ◽  
Author(s):  
Thiago Ferreira Covões ◽  
Eduardo Raul Hruschka ◽  
Joydeep Ghosh

This paper describes the evolutionary split and merge for expectation maximization (ESM-EM) algorithm and eight of its variants, which are based on the use of split and merge operations to evolve Gaussian mixture models. Asymptotic time complexity analysis shows that the proposed algorithms are competitive with the state-of-the-art genetic-based expectation maximization (GA-EM) algorithm. Experiments performed in 35 data sets showed that ESM-EM can be computationally more efficient than the widely used multiple runs of EM (for different numbers of components and initializations). Moreover, a variant of ESM-EM free from critical parameters was shown to be able to provide competitive results with GA-EM, even when GA-EM parameters were fine-tuned a priori.


Sign in / Sign up

Export Citation Format

Share Document