Quasi-parallel computation of maximum time interval error estimates

Author(s):  
A. Dobrogowski ◽  
M. Kasznia
2018 ◽  
Vol 4 (2) ◽  
pp. 149-154
Author(s):  
Aleksey Kulikov ◽  
Andrey Lepyokhin ◽  
Vitaly Polunichev

The purpose of the work was to optimize the parameters of the spillage system equipped with a gas pressure hydroaccumulator for a ship pressurized water reactor in a loss-of-coolant accident. The water-gas ratio in the hydroaccumulator and the hydraulic resistance of the path between the hydroaccumulator and the reactor were optimized at the designed hydroaccumulator geometric volume. The main dynamic processes were described using a mathematical model and a computational analysis. A series of numerical calculations were realized to simulate the behavior dynamics of the coolant level in the reactor during the accident – by varying the optimized parameters. Estimates of the minimum and maximum values of the coolant level were obtained: depending on the initial water-gas ratio in the hydroaccumulator at different diameters of the flow restrictor on the path between the hydroaccumulator and the reactor. These results were obtained subject to the restrictive conditions that, during spillage, the coolant level should remain above the core and below the blowdown nozzle. The first condition implies that the core is in safe state, the second excludes the coolant water blowdown. The optimization goal was to achieve the maximum time interval in which these conditions would be satisfied simultaneously. The authors propose methods for selecting the optimal spillage system parameters; these methods provide the maximum time for the core to be in a safe state during a loss-of-coolant accident at the designed hydroaccumulator volume. Using these methods, it is also possible to make assessments from the early stages of designing reactor plants.


Sign in / Sign up

Export Citation Format

Share Document