Learning flexible structured linguistic fuzzy rules for mamdani fuzzy systems

Author(s):  
Ning Xiong
2013 ◽  
pp. 498-512
Author(s):  
Erik Cuevas ◽  
Daniel Zaldivar ◽  
Marco Perez-Cisneros

Reliable corner detection is an important task in pattern recognition applications. In this chapter an approach based on fuzzy-rules to detect corners even under imprecise information is presented. The uncertainties arising due to various types of imaging defects such as blurring, illumination change, noise, et cetera. Fuzzy systems are well known for efficient handling of impreciseness. In order to handle the incompleteness arising due to imperfection of data, it is reasonable to model corner properties by a fuzzy rule-based system. The robustness of the proposed algorithm is compared with well known conventional detectors. The performance is tested on a number of benchmark test images to illustrate the efficiency of the algorithm in noise presence.


2010 ◽  
Vol 36 (2) ◽  
pp. 463-473 ◽  
Author(s):  
Raja Noor Ainon ◽  
Awang M. Bulgiba ◽  
Adel Lahsasna

Author(s):  
Mokhtar Beldjehem ◽  

We propose a novel computational granular unified framework that is cognitively motivated for learning if-then fuzzy weighted rules by using a hybrid neuro-fuzzy or fuzzy-neuro possibilistic model appropriately crafted as a means to automatically extract or learn fuzzy rules from only input-output examples by integrating some useful concepts from the human cognitive processes and adding some interesting granular functionalities. This learning scheme uses an exhaustive search over the fuzzy partitions of involved variables, automatic fuzzy hypotheses generation, formulation and testing, and approximation procedure of Min-Max relational equations. The main idea is to start learning from coarse fuzzy partitions of the involved variables (both input and output) and proceed progressively toward fine-grained partitions until finding the appropriate partitions that fit the data. According to the complexity of the problem at hand, it learns the whole structure of the fuzzy system, i.e. conjointly appropriate fuzzy partitions, appropriate fuzzy rules, their number and their associated membership functions.


Author(s):  
Kiyohiko Uehara ◽  
◽  
Takumi Koyama ◽  
Kaoru Hirota ◽  

Theoretical aspects are provided for inference based on α-cuts and generalized mean (α-GEMII). In order to clarify the basic properties of the inference, fuzzy tautological rules (FTRs) are focused on, which are composed by setting fuzzy sets in consequent parts identical to those in antecedent parts of initially given fuzzy rules. It is mathematically proved that the consequences deduced with FTRs are closer to given facts as the number of FTRs increases. The aspects provided in this paper are appropriate from axiomatic viewpoints and can contribute to interpretability in fuzzy systems constructed with α-GEMII. They are not obtained in conventional methods based on the compositional rule of inference. Simulations are performed by evaluating difference (mean square errors) between given facts and deduced consequences under the condition that convex and symmetric fuzzy sets are given as facts. Their results show that the difference becomes smaller as the number of FTRs increases. Thereby, it is confirmed that α-GEMII has an advantage in the interpretability with respect to FTRs over the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document