Low cost solar thermal energy generation for developing economies

Author(s):  
Darick W. LaSelle ◽  
Robert Liechty ◽  
Hassan Alzamzam ◽  
Robert Foster ◽  
Jasmin Dzabic ◽  
...  
1983 ◽  
Vol 105 (1) ◽  
pp. 73-79
Author(s):  
A. A. Kudirka ◽  
R. H. Smoak

Development of ceramic receiver technology for advanced solar thermal energy applications is being pursued in order to achieve significant reductions in energy cost and increase the potential application of solar thermal energy. Basically, structural ceramics are being seriously considered for solar applications because of their high temperature capability, their nonstrategic nature, and their potential for low cost. In this paper, candidate ceramic materials for solar receivers and their characteristics are described, potentially applicable fabrication and processing methods are discussed, and their applicability and promise for solar receivers is assessed. Receiver design requirements as well as system requirements for solar applications are reviewed. Promising areas of application of ceramic receivers in the near future are also discussed. Current ceramic receiver development status and plans are described, including one receiver which has been successfully tested at gas exit temperatures of up to 1425°C.


2019 ◽  
Vol 54 (2) ◽  
pp. 155-160
Author(s):  
S Tabassum ◽  
MS Bashar ◽  
MS Islam ◽  
A Sharmin ◽  
SC Debnath ◽  
...  

Solar thermal energy is an alternative source of energy which can be used for drying vegetables, fishes, fruits or other kinds of material, such as wood. In Bangladesh, there exist significant post-harvest losses of agricultural products due to lack of the use of proper preservation system. Drying by using solar thermal energy can be an effective solution for this loss. As Bangladesh is situated in latitude 23°43’N and longitude 90°26’E, this is very much suitable to use solar thermal energy. To reduce the limitations of the natural sun drying e.g. exposure of the foodstuff to rain and dust; uncontrolled drying; exposure to direct sunlight; infestation by insects etc., two types of solar dryer (low cost solar dryer for small production and solar dryer for large production) were developed. The design was based on the geographical location of Dhaka, Bangladesh. The experiments were conducted to dry vegetables and fishes. The obtained results revealed that the temperatures inside the dryer were much higher than the ambient temperature. The rapid rate of drying proves its ability to dry food to keep in safe moisture level in a hygienic environment. Microbiological and nutritional values ensure a superior quality of the dried product also. Bangladesh J. Sci. Ind. Res.54(2), 155-160, 2019


2022 ◽  
Vol 66 ◽  
pp. 201-208
Author(s):  
Mayank Gupta ◽  
Atyant Bhatnagar ◽  
Atul Kumar Dubey ◽  
Virendra Kumar ◽  
Dalip Singh Mehta

2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 120096
Author(s):  
Hongjuan Hou ◽  
Qiongjie Du ◽  
Chang Huang ◽  
Le Zhang ◽  
Eric Hu

Sign in / Sign up

Export Citation Format

Share Document