food preservation
Recently Published Documents


TOTAL DOCUMENTS

1363
(FIVE YEARS 521)

H-INDEX

64
(FIVE YEARS 12)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Arya Nair ◽  
Rashmi Mallya ◽  
Vasanti Suvarna ◽  
Tabassum Asif Khan ◽  
Munira Momin ◽  
...  

Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Shanshan Zhao ◽  
Xiangmei Hao ◽  
Fengyuan Yang ◽  
Yuan Wang ◽  
Xiaomiao Fan ◽  
...  

Lactic acid bacteria (LAB) can produce many kinds of antifungal substances, which have been widely proven to have antifungal activity. In this study, 359 strains of LAB were screened for antifungal activity against Aspergillus niger (A. niger) using the 96-well microtiter plate method, and three showed strong activity. Of these, ZZUA493 showed a broad-spectrum antifungal ability against A. niger, Aspergillus oryzae, Trichoderma longibrachiatum, Aspergillus flavus and Fusarium graminearum. ZZUA493 was identified as Lactobacillus plantarum. Protease treatment, the removal of hydrogen peroxide with catalase and heat treatment had no effect on the antifungal activity of the cell-free supernatant (CFS) of ZZUA493; organic acids produced by ZZUA493 appeared to have an important role in fungal growth inhibition. The contents of lactic acid, acetic acid and phenyllactic acid in the CFS tended to be stable at 48 h, and amounted to 28.5, 15.5 and 0.075 mg/mL, respectively. In addition, adding ZZUA493, as an ingredient during their preparation, prolonged the shelf life of Chinese steamed buns. Overall, ZZUA493 appears to have good potential as a fungal inhibitor for food preservation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Nisita Dewanggana ◽  
Clare Evangeline ◽  
Maurita Delia Ketty ◽  
Diana Elizabeth Waturangi ◽  
Yogiara ◽  
...  

AbstractAmong food preservation methods, bacteriophage treatment can be a viable alternative method to overcome the drawbacks of traditional approaches. Bacteriophages are naturally occurring viruses that are highly specific to their hosts and have the capability to lyse bacterial cells, making them useful as biopreservation agents. This study aims to characterize and determine the application of bacteriophage isolated from Indonesian traditional Ready-to-Eat (RTE) food to control Enterotoxigenic Escherichia coli (ETEC) population in various foods. Phage DW-EC isolated from Indonesian traditional RTE food called dawet with ETEC as its host showed a positive result by the formation of plaques (clear zone) in the bacterial host lawn. Transmission electron microscopy (TEM) results also showed that DW-EC can be suspected to belong to the Myoviridae family. Molecular characterization and bioinformatic analysis showed that DW-EC exhibited characteristics as promising biocontrol agents in food samples. Genes related to the lytic cycle, such as lysozyme and tail fiber assembly protein, were annotated. There were also no signs of lysogenic genes among the annotation results. The resulting PHACTS data also indicated that DW-EC was leaning toward being exclusively lytic. DW-EC significantly reduced the ETEC population (P ≤ 0.05) in various food samples after two different incubation times (1 day and 6 days) in chicken meat (80.93%; 87.29%), fish meat (63.78%; 87.89%), cucumber (61.42%; 71.88%), tomato (56.24%; 74.51%), and lettuce (46.88%; 43.38%).


2022 ◽  
pp. 1-35
Author(s):  
Tian Yang ◽  
Wen Qin ◽  
Qing Zhang ◽  
Junyun Luo ◽  
Derong Lin ◽  
...  

2022 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Diaa Marrez ◽  
Abdulrhman Shaker ◽  
Mohamed Ali ◽  
Hayam Fathy

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 155
Author(s):  
Veronika Valková ◽  
Hana Ďúranová ◽  
Lucia Galovičová ◽  
Petra Borotová ◽  
Nenad L. Vukovic ◽  
...  

Antimicrobial in vitro and in situ efficacies of Cymbopogon citratus essential oil (lemongrass, LGEO) against 17 spoilage microorganisms (bacteria, yeasts and fungi) were evaluated. Additionally, its chemical composition, and antioxidant and antibiofilm activities were investigated. The LGEO exhibited a strong antioxidant activity (84.0 ± 0.1%), and its main constituents were citral (61.5%), geraniol (6.6%) and 1,8-cineole (6.4%). An in vitro antimicrobial evaluation revealed the lowest inhibition zone (1.00 ± 0.00 mm) in Pseudomonas fluorescens, and the highest inhibition zone (18.00 ± 2.46 mm) in Candida krusei. The values for the minimal inhibitory concentration were determined to be the lowest for Salmonella enteritidis and the highest for C. albicans. Furthermore, the concentration of ≥250 µL/L of LGEO suppressed the growth of Penicillium aurantiogriseum, Penicillium expansum, Penicillium chrysogenum and Penicillium italicum. The changes in the molecular structure of the biofilms produced by Pseudomonas fluorescens and Salmonella enteritidis, after their treatment with LGEO, confirmed its action on both biofilm-forming bacteria. Moreover, an in situ antimicrobial activity evaluation displayed the most effective inhibitory effectiveness of LGEO against Micrococcus luteus, Serratia marcescens (250 µL/L) and Penicillium expansum (125, 250 and 500 µL/L) growing on a carrot. Our results suggest that LGEO, as a promising natural antimicrobial agent, can be applied in the innovative packaging of bakery products and different types of vegetables, which combines commonly used packing materials with the addition of LGEO.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 255-258
Author(s):  
A. S. Ammar ◽  
W. A. Bazaraa

In the past two decades, nano-science is widely used in different applications and the increased interest in the utilization of nanoparticles in food processing is clear. Such applications include processing, packaging, development of functional food, safety, foodborne pathogens detection, and shelf-life extension. In this article, the essential facts and the latest uses of nano-science in fruit and vegetable juices were described. The green synthesis of nanoparticles with antioxidant, antibacterial and antifungal characteristics is of great interest in food preservation. These nanoparticles such as metals, oxidized metals and its bioactivity in juice were reviewed. The current procedures to prepare nanojuice including nanofiltration and the most recent nanomilling were presented. Beside the preparation, special emphasis has also been given to the chemical as well as the biological (microbial and enzymatic) quality of the produced nanojuice. The role of nanotechnology in the development of the smart and the active food packaging systems for the improvement of food shelf- life and quality was also discussed. Since the physical and chemical characteristics of nanoparticles are completely different from those of macro-size. Therefore, special and urgent attention by responsible authorities should be given and effective policies should be applied for food products to ensure product quality, customer health and safety as well as the environmental protection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Nadia Oulahal ◽  
Pascal Degraeve

In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.


Sign in / Sign up

Export Citation Format

Share Document