recovery system
Recently Published Documents


TOTAL DOCUMENTS

2412
(FIVE YEARS 571)

H-INDEX

38
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Wenting Liu ◽  
Qingliang Zeng ◽  
Lirong Wan ◽  
Jinxia Liu ◽  
Hanzheng Dai

Although some reliability importance measures and maintenance policies for mechanical products exist in literature, they are rarely investigated with reference to weakest component identification in the design stage and preventive maintenance interval during the life cycle. This paper is mainly study reliability importance measures considering performance and costs (RIMPC) of maintenance and downtime of the mechanical hydraulic system (MHS) for hydraulic excavators (HE) with energy regeneration and recovery system (ERRS) and suggests the scheduled maintenance interval for key components and the system itself based on the reliability R i t . In the research, the required failure data for reliability analysis is collected from maintenance crews and users over three years of a certain type of hydraulic excavators. Minitab is used for probable distribution estimation of the mechanical hydraulic system failure times, and the model is verified to obey Weibull distribution. RIMPC is calculated by multiplying the reliability R i t and weighting factor W i and then compared with other classical importance measures. The purpose of this paper is to identify the weakest component for MHS in the design stage and to make appropriate maintenance strategies which help to maintain a high reliability level for MHS. The proposed method also provides the scientific maintenance suggestion for improving the MHS reliability of the HE reasonably, which is efficient, profitable, and organized.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 371
Author(s):  
Piero Danieli ◽  
Massimo Masi ◽  
Andrea Lazzaretto ◽  
Gianluca Carraro ◽  
Gabriele Volpato

Preheating is often required to prevent hydrate formation during the pressure reduction process in a natural gas distribution network’s pressure reduction station. This paper examines an energy recovery method to avoid the cost and energy consumption of this preheating. The primary aim is to assess the techno-economic feasibility of an energy recovery system based on the Ranque–Hilsch vortex tube coupled to a heat exchanger for large-scale application to the gas grid. To this end, a techno-economic model of the entire energy recovery system was included in an optimisation procedure. The resulting design minimises the payback period (PP) when the system is applied to the pressure reduction stations belonging to a particular gas grid. The pressure reduction stations always operate at an outlet pressure above atmospheric pressure. However, available performance models for the Ranque–Hilsch vortex tube do not permit prediction at backpressure operation. Therefore, a novel empirical model of the device is proposed, and a cost function derived from several manufacturer quotations is introduced for the first time, to evaluate the price of the Ranque–Hilsch vortex tubes. Finally, a nearly complete set of pressure reduction stations belonging to the Italian natural gas grid was chosen as a case study using actual operating parameters collected by each station’s grid manager. The results indicate that the environmental temperature strongly affects the technical and economic feasibility of the proposed energy recovery system. In general, pressure reduction stations operating at an ambient temperature above 0 °C are economically desirable candidates. In addition, the higher the energy recovery system convenience, the higher the flow rate and pressure drop managed by the station. In the Italian case study, 95% of preheating costs could be eliminated with a PP of fewer than 20 years. A 40% preheating cost saving is still possible if the maximum PP is limited to 10 years, and a small but non-negligible 3% of preheating costs could be eliminated with a PP of fewer than 4.5 years.


2022 ◽  
Author(s):  
Ladislav Vesely ◽  
Jayanta S. Kapat ◽  
Cleverson Bringhenti ◽  
Jesuíno T. Tomita ◽  
Michael F. Stoia ◽  
...  

Author(s):  
Liu Shuailing ◽  
Ma Guoyuan ◽  
Jia Xiaoya ◽  
Xu Shuxue ◽  
Wu Guoqiang

Sign in / Sign up

Export Citation Format

Share Document