An Efficient Multi-Target Tracking Algorithm Using Gaussian Mixture Probability Hypothesis Density Filter

Author(s):  
Li Gao ◽  
Huanqing Zhang ◽  
Ying Wang
2018 ◽  
Vol 176 ◽  
pp. 03010
Author(s):  
Lu Miao ◽  
Xin-xi Feng ◽  
Luo-jia Chi

An adaptive tracking algorithm based on Extended target Probability Hypothesis Density (ETPHD) filter is proposed for extended target tracking problem with priori unknown target birth intensity.The algorithm is implemented by gaussian mixture, where the target birth intensity is generated by measurement-driven, and the persistent and the newborn targets intensity are respectively predicted and updated. The simulation results show that the proposed algorithm improves the performance of the probability hypothesis density filter in the extended target tracking.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4416 ◽  
Author(s):  
Defu Jiang ◽  
Ming Liu ◽  
Yiyue Gao ◽  
Yang Gao ◽  
Wei Fu ◽  
...  

The random finite set (RFS) approach provides an elegant Bayesian formulation of the multi-target tracking (MTT) problem without the requirement of explicit data association. In order to improve the performance of the RFS-based filter in radar MTT applications, this paper proposes a time-matching Bayesian filtering framework to deal with the problem caused by the diversity of target sampling times. Based on this framework, we develop a time-matching joint generalized labeled multi-Bernoulli filter and a time-matching probability hypothesis density filter. Simulations are performed by their Gaussian mixture implementations. The results show that the proposed approach can improve the accuracy of target state estimation, as well as the robustness.


Sign in / Sign up

Export Citation Format

Share Document