Distributed Algorithm for High-Utility Subgraph Pattern Mining Over Big Data Platforms

Author(s):  
Alind Khare ◽  
Vikram Goyal ◽  
Srikanth Baride ◽  
Sushil K. Prasad ◽  
Michael McDermott ◽  
...  
Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rashad S. Almoqbily ◽  
Azhar Rauf ◽  
Fahmi H. Quradaa
Keyword(s):  

Author(s):  
Jimmy Ming-Tai Wu ◽  
Qian Teng ◽  
Shahab Tayeb ◽  
Jerry Chun-Wei Lin

AbstractThe high average-utility itemset mining (HAUIM) was established to provide a fair measure instead of genetic high-utility itemset mining (HUIM) for revealing the satisfied and interesting patterns. In practical applications, the database is dynamically changed when insertion/deletion operations are performed on databases. Several works were designed to handle the insertion process but fewer studies focused on processing the deletion process for knowledge maintenance. In this paper, we then develop a PRE-HAUI-DEL algorithm that utilizes the pre-large concept on HAUIM for handling transaction deletion in the dynamic databases. The pre-large concept is served as the buffer on HAUIM that reduces the number of database scans while the database is updated particularly in transaction deletion. Two upper-bound values are also established here to reduce the unpromising candidates early which can speed up the computational cost. From the experimental results, the designed PRE-HAUI-DEL algorithm is well performed compared to the Apriori-like model in terms of runtime, memory, and scalability in dynamic databases.


2021 ◽  
Author(s):  
Md Motaher Hossain ◽  
Youxi Wu ◽  
Philippe Fournier-Viger ◽  
Zhao Li ◽  
Lei Guo ◽  
...  

Author(s):  
S. Jevalaksshmi ◽  
K. Hema Shankari ◽  
S. Mathivilasini ◽  
T.Nusrat Jabeen ◽  
K. Maheswari ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document