Improvement for power quality by using dynamic voltage restorer in electrical distribution networks

Author(s):  
Amir Hameed Abed ◽  
Javad Rahebi ◽  
Ali Farzamnia
Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

<p>Power distribution networks are considered the main link between power industry and consumers and they are exposed to public judgment and evaluation more than any other section. Thus, it is essential to study power quality in distribution section. On the other hand, power distribution networks have always been exposed to traditional factors such as  voltage sag, voltage swell, harmonics and capacitor switching which destruct sinusoidal waveforms and decrease power quality as well as network reliability. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is  adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. This paper reviews on the application of DVR for Voltage Compensation in recent years and gives sets of information for each control of the DVR in distribution networks.</p>


2012 ◽  
Vol 622-623 ◽  
pp. 1830-1834 ◽  
Author(s):  
Mojtaba Hakimzadeh ◽  
Reza Sedaghati

Power quality has become an increasingly important topic in the performance of many industrial applications. One of the major issues in improving power quality in distribution networks is the mitigation of voltage sags. Voltage sag can be mitigated by voltage and power injections into the distribution system using Dynamic Voltage Restorer (DVR). The DVR is a powerful controller that is commonly used for voltage sags mitigation at the point of connection. This paper describes of modeling and analysis of DVR. Different types of faults are applied for DVR in distribution network and the responses of the system for these disturbances are examined. Simulation results obtained in PSCAD/EMTDC also prove that the DVR can mitigate voltage sag and protect bus bar voltage from various types of faults.


Author(s):  
Ali Basim Mohammed ◽  
Mohd Aifaa Mohd Ariff ◽  
Sofia Najwa Ramli

This paper represents a review of the dynamic voltage restorer for power quality improvement in the electrical distribution system. Over the past 50 years, issues concerning power quality have steadily increased, to prevent the effect of the voltage disturbances, some of the devices are put as a solution to these problems such as distribution static compensator (D- STATCOM), solid-state transformer (SST), uninterruptible power supply (UPS), dynamic voltage restorer (DVR). The DVR is one of the economic solutions to overcome the voltage disturbances like voltage sag/swell and harmonics. It is widely used to mitigate the voltage disturbances in the power distribution system, especially in the medium and low distribution networks. This paper aims to review the implementation of the DVR in the system integrated with renewable energy resources. This is important because the future of electricity business is moving towards renewable energy and also provides a thorough discussion of the typical components, controllers, compensation methods, and the application of DVR. The extensive review of the technology aims to ease and speed up the development and the advancement of the DVR in the near future.


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

As a consequence of sensitive, diverse and complex loads in today's distribution networks, improving power quality in distribution systems has attracted great attention. Power quality issues involve voltage sags, transient interrupts and other distortions in sinusoidal waveforms. Enormous methods have been proposed for power quality modification. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. Consisted of three single phase inverters and a DC bus, it can protect susceptible loads against various types of voltage sags as well as other disturbances in the power supply. Moreover, it is capable of generating and absorbing active and reactive power. Therefore, in this paper, different structures of  DVR have been investigated and eventually proposed a new structure for DVR based on Γ-Source asymmetric inverter. With the proposed structure, severe voltage sags can be retrieved 80- 90 percent. The simulation results that obtained by using MATLAB/Simulink indicate the properly functioning of proposed structure.


In the present energy scenario, one of major problems is with Power quality. Power quality came to more relevant, focused, with the addition of suitable equipment, where its behavior is very much important to the power supply quality. Power quality issue is a phenomenon noted as a not usual standard current, frequency or voltage which may results in a failure of sophiscated devices. The main issue focuses at the power swell & sag. In the paper, authors present a novel methodology for the prevention of voltage sag & swell. To rectify this issue, customized power equipments are adopted. Among them, Dynamic Voltage Restorer (DVR), the best as well as right advanced customized power equipment used in power distribution networks. The advantages include reduced price, low size, and its good transient response to the interferences. This work explain the MATLAB results of a Dynamic Voltage Restorer (DVR) modeling and analysis. Here, conventional controller like PI type and GA Tuned PI controller are used for comparison. In the offered method, PI controller parameters using GA Tuned implemented is being replaced by the traditional PI controller in order to develop the performance of the plant. The aim of the controller is made faster than conventional technique based controller. By MATLAB simulation tool, the performance can be studied.


2014 ◽  
Vol 573 ◽  
pp. 716-721
Author(s):  
S. Rajeshbabu ◽  
B.V. Manikandan

Renewable energy sources provide the additional/satisfy the power to the consumer through power electronics interfaces and integrated with the grid. In grid integration power quality is one of the important parameter that need to be paying more attention. This proposed work focuses on power quality issues in a grid connected renewable energy system. Power quality issues will arises due to many factors here with the by introducing a fault condition in a grid connected renewable energy system the measurements were made at the point of common coupling and the mitigation is done with the help of a dynamic voltage restorer. The dynamic voltage restorer is a device which offers series compensation activated by neural network based controller. The sag improvement and the total harmonic assessment were made at the point of common coupling. Keywords: Neural network, Point of common coupling, Renewable energy source, Power quality, Dynamic voltage restorer ,electric grid.


Sign in / Sign up

Export Citation Format

Share Document