Performance Study of Dynamic Voltage Restorer (DVR) in Order to Power Quality Improvement

2012 ◽  
Vol 622-623 ◽  
pp. 1830-1834 ◽  
Author(s):  
Mojtaba Hakimzadeh ◽  
Reza Sedaghati

Power quality has become an increasingly important topic in the performance of many industrial applications. One of the major issues in improving power quality in distribution networks is the mitigation of voltage sags. Voltage sag can be mitigated by voltage and power injections into the distribution system using Dynamic Voltage Restorer (DVR). The DVR is a powerful controller that is commonly used for voltage sags mitigation at the point of connection. This paper describes of modeling and analysis of DVR. Different types of faults are applied for DVR in distribution network and the responses of the system for these disturbances are examined. Simulation results obtained in PSCAD/EMTDC also prove that the DVR can mitigate voltage sag and protect bus bar voltage from various types of faults.

Author(s):  
Soe Soe Ei Aung ◽  
May Phone Thit

Electrical ac power systems consist of generation systems, transmission and distribution networks. The large three phase industrial loads at various distribution and transmission voltages as well as single-phase residential and commercial loads are supplied by the networks. Nowadays, the power quality such as voltage sags/swell, transient interrupts and harmonic distortions in sinusoidal waveforms are concerned with most of the electrical loads. The power quality problems such as voltage sags, swells and harmonics are caused by the widespread using of power electronics devices in power system. In this paper, electrical voltage sags/swells of power quality problems are considered because this problem is one of the most severe disturbances to the industrial equipment of distribution system. Thus, mitigation of these voltages in distribution system is necessary. So, series connected power electronics based device such as Dynamic Voltage Restorer (DVR) is chosen to compensate these voltage for mitigating quickly the voltage sag/swell in the system and restoring the load voltage to the nominal value. For case study, Myaungtagar industrial zone is chosen due to furnaces and large motor drives that cause the common problems such as voltage sag/swell in this system. In this paper, performance analysis of voltage sag/swell compensation of power distribution system with Dynamic Voltage Restorer (DVR) under various fault conditions is carried out. The proposed configuration model uses MATLAB/SIMULINK and the performance of voltage compensation and restoration of load voltage to the nominal value with DVR under various fault conditions is verified by the simulation results.


Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


2016 ◽  
Vol 818 ◽  
pp. 52-57 ◽  
Author(s):  
Faridullah Kakar ◽  
Abdullah Asuhaimi bin Mohd Zin ◽  
Mohd Hafiz bin Habibuddin

Voltage sag and harmonics are the most frequent power quality problems faced by industrial and commercial customers today. Situation has been aggravated by modern sensitive industrial equipments which introduce system harmonics due to their inherent V-I characteristics. In this paper, proportional integral (PI) control technique based dynamic voltage restorer (DVR) is implemented in power distribution system to suppress voltage sag and harmonics under linear, non-linear and induction motor load conditions. Real-time power distribution system and DVR test models are built in Matlab/Simulink software. Simulation results exhibit excellent PI control approach with effective performance yielding excellent voltage regulation.


2021 ◽  
Vol 309 ◽  
pp. 01108
Author(s):  
Someshwara Thota ◽  
Vinay Kumar Awaar ◽  
Praveen Jugge ◽  
S Tara Kalyani

Voltage sag and voltage swell are frequently occurred power quality problems in present power distribution system, which are cause more problems to avoid these problems and maintain constant voltage at sensitive load during sag and swell Dynamic voltage restorer gives solution .we propose self-supported DVR, to minimize the cost by preventing external dc source in DVR, it is controlled by SRF PI control along with an inner current loop to stabilize the system and outer voltage loop to increase the system robustness. The proposed model provides fast voltage restoration for a short and long duration of voltage sags and swells manage wide load current variation for short and long voltage disturbances. In this paper, we present the effectiveness of the proposed method by using MATLAB/simulation results. A laboratory prototype DVR is modelled and we are using CCS studio to interface DSPTMS320F28027F


Author(s):  
Lakshmi Lakshmi Kumari ◽  
Uma Vani Uma Vani

<p>This paper presents the application of dynamic voltage restorers (DVR) on power distribution Systems for mitigation of voltage sags/swells at critical loads. DVR is one of the compensating types of custom power devices. The power quality is affected mainly due to the sensitive loads which results in voltage sag and voltage swells. It is necessary to investigate the suitable methods for mitigation of voltage sags. Sensitivity is the main cause of the above power quality problems and it cannot be eliminated completely as it has many other operating properties. So the next possible solution is to correct the problems caused by the sensitive equipments connected to the faulty loads. The occurrence of sag and swell varies with equipment, environment, process operations, desired control schemes etc. From the wide range of mitigation methods, the selected one has to be observed for the effect on the characteristics. These problems can be mitigated with voltage injection method using custom power device, Dynamic Voltage Restorer (DVR). In this paper we design a Dynamic Voltage Restorer (DVR) which is utilized for power quality improvement. The main power quality problems like voltage sag and swell are studied in this paper. The device used to phase out voltage sags and a swell in the distribution lines is the Dynamic Voltage Restorer (DVR). The Dynamic Voltage Restorer is a special type of power device used for providing consistent and reliable supply power to the load devices. Dynamic Voltage Restorer uses a vector control strategy for mitigating power quality problems by automatically detecting and injecting the voltage components through an injection transformer. Here comes the importance of soft computing techniques like PI controller. The system will be able to correct repeated occurrences of the power quality problems. </p>


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

As a consequence of sensitive, diverse and complex loads in today's distribution networks, improving power quality in distribution systems has attracted great attention. Power quality issues involve voltage sags, transient interrupts and other distortions in sinusoidal waveforms. Enormous methods have been proposed for power quality modification. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. Consisted of three single phase inverters and a DC bus, it can protect susceptible loads against various types of voltage sags as well as other disturbances in the power supply. Moreover, it is capable of generating and absorbing active and reactive power. Therefore, in this paper, different structures of  DVR have been investigated and eventually proposed a new structure for DVR based on Γ-Source asymmetric inverter. With the proposed structure, severe voltage sags can be retrieved 80- 90 percent. The simulation results that obtained by using MATLAB/Simulink indicate the properly functioning of proposed structure.


Author(s):  
Ali Basim Mohammed ◽  
Mohd Aifaa Mohd Ariff

This paper represents a new configuration of the dynamic voltage restorer consists of approximate classical sliding mode differentiator (ACSMD) with the terminal sliding mode controller (TSMC) as the nonlinear sliding variable. In this study, the proposed structure of the DVR is utilized to maintain the magnitude of the load voltage at a constant value, maintain the system total harmonic distortion (THD), boost the robustness property and minimize the steady-state error. The power quality has received more interest due to the implementation of various industrial devices and critical loads at the distribution side. Nowadays, the main challenges in power quality in the system are voltage sags/swells, harmonics and voltage imbalance. Various devices are utilized to address these challenges. The dynamic voltage restorer is one of these devices. It is connected in series with the distribution system and injects a proper voltage magnitude to maintain the voltage load at the constant value. In this paper, the DVR model with the ASMF and TSMC is implemented in using MATLAB/Simulink. The proposed controller is evaluated using the standard voltage sag indices.


Author(s):  
Ali Basim Mohammed ◽  
Mohd Aifaa Mohd Ariff ◽  
Sofia Najwa Ramli

This paper represents a low complexity of the DVR controller by using a robust differentiator named as approximate classical sliding mode differentiator (ACSMD) to overcome the drawback of the linear differentiator. Additionally, utilize a nonlinear sliding variable named arctan function (sigmoid function) in order to keep the magnitude of the load voltage approximately 1pu, the THD at the standard level, improve the robustness property and maintain the steady-state error within a small bound. The most important issues of the power system network are power quality, the major problems of power quality are voltage sag/swell and harmonics which cause tripping or malfunctioning of the equipment. This paper gives an economic and effective solution by utilizing the dynamic voltage restorer to protect the sensitive loads from the disturbances that happened in the system such as voltage sag/swell and harmonics. The proposed system of the DVR is investigated by utilizing MATLAB/Simulink to enhance the disturbances when it occurs in a distribution system. The presents DVR model is evaluated by utilizing some of the popular voltage sag indices.


Sign in / Sign up

Export Citation Format

Share Document