network reliability
Recently Published Documents


TOTAL DOCUMENTS

1181
(FIVE YEARS 244)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 544
Author(s):  
Hakim Abdulrab ◽  
Fawnizu Azmadi Hussin ◽  
Azrina Abd Aziz ◽  
Azlan Awang ◽  
Idris Ismail ◽  
...  

Communication in industrial wireless networks necessitates reliability and precision. Besides, the existence of interference or traffic in the network must not affect the estimated network properties. Therefore, data packets have to be sent within a certain time frame and over a reliable connection. However, the working scenarios and the characteristics of the network itself make it vulnerable to node or link faults, which impact the transmission reliability and overall performance. This article aims to introduce a developed multipath routing model, which leads to cost-effective planning, low latency and high reliability of industrial wireless mesh networks, such as the WirelessHART networks. The multipath routing model has three primary paths, and each path has a backup node. The backup node stores the data transmitted by the parent node to grant communication continuity when primary nodes fail. The multipath routing model is developed based on optimal network planning and deployment algorithm. Simulations were conducted on a WirelessHART simulator using Network Simulator (NS2). The performance of the developed model is compared with the state-of-the-art. The obtained results reveal a significant reduction in the average network latency, low power consumption, better improvement in expected network lifetime, and enhanced packet delivery ratio which improve network reliability.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xia Xu ◽  
Jin Tang ◽  
Hua Xiang

With the rapid development of the Internet in recent years, people are using the Internet less and less frequently. People publish and obtain information through various channels on the Internet, and online social networks have become one of the most important channels. Many nodes in social networks and frequent interactions between nodes create great difficulties for privacy protection, and some of the existing studies also have problems such as cumbersome computational steps and low efficiency. In this paper, we take the complex environment of social networks as the research background and focus on the key issues of mobile wireless sensor network reliability from the mobile wireless sensor networks that apply to large-scale, simpler information, and delay tolerance. By introducing intelligent learning methods and swarm intelligence bionic optimization algorithms, we address reliability issues such as mobile wireless sensor network fault prediction methods and topology reliability assessment methods in industrial application environments, the impact of mobile path optimization of mobile wireless sensor networks on data collection efficiency and network reliability, reliable data transmission based on data fusion methods, and intelligent fault tolerance strategies for multipath routing to ensure mobile wireless sensor networks operate energy-efficiently and reliably in complex industrial application environments.


2021 ◽  
Author(s):  
Huazhen Cao ◽  
Chong Gao ◽  
Yaxiong Wu ◽  
Hao Li ◽  
Zijun Wang ◽  
...  

This paper presents an estimation method of distribution network reliability planning Investment Based on sequence linearization correlation analysis. Firstly, the planning business index closely related to reliability are selected, and the control objectives of reliability index are decomposed into the promotion objectives of each planning business index through sequence linearization correlation analysis. Then, the typical engineering construction scenarios corresponding to each planning business index are constructed, and the investment required to achieve the corresponding promotion objectives of business index is estimated according to the typical scenarios, Finally, the total investment of reliability planning is obtained. The example shows that the method can be applied to the actual distribution network with complex grid conditions and various planning schemes, and can provide powerful guidance for power supply enterprises to improve the efficiency of capital use


2021 ◽  
Vol 11 (23) ◽  
pp. 11456
Author(s):  
Mohammadreza Shekari ◽  
Hamidreza Arasteh ◽  
Alireza Sheikhi Fini ◽  
Vahid Vahidinasab

Demand-side response programs, commonly known as demand response (DR), are interesting ways to attract consumers’ participation to improve electric consumption patterns. Customers are encouraged to modify their usage patterns in reaction to price increases through DR programs. When wholesale market prices are high or network reliability is at risk, DR can help to establish a balance between electricity generation and consumption by providing incentives or considering penalties. The overall objective of adopting DR programs is to increase network reliability and decrease operational costs. Nevertheless, the successful deployment of DR programs requires a set of conditions without which no success can be guaranteed. Implementing DR programs and achieving customers’ optimal power consumption behavior could be obtained through technical methods, such as using smart home appliances and big data techniques. However, even if each of these approaches is correctly implemented, they are not able to address all aspects of the problem. The findings of several studies demonstrate that, in addition to technical and economic concerns, social, cultural, and behavioral variables play a significant role in DR implementation. Therefore, this paper investigated the social, cultural, and behavioral variables as critical requirements for implementing DR programs. Furthermore, a theoretical framework and an analytical model of the elements impacting the electricity consumption are introduced that should be considered by the planners.


2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110391
Author(s):  
Yuvaraja Teekaraman ◽  
Hariprasath Manoharan ◽  
Ramya Kuppusamy ◽  
Shabana Urooj ◽  
Fadwa Alrowais

This article focuses on intensifying in-vehicle biological wireless sensor networks for the persistence of monitoring the information on a precise vehicle. The wireless sensor networks will have enormous amount of nodules which are interrelated with each other. Therefore, these wireless sensor networks can be installed on a vehicle not only for monitoring perseverance but also for corroborating security with the support of a Global Positioning System expedient. In addition, the projected work focuses on reliable communiqué which is defined in terms of network reliability with discrepancy in reporting rate at each base station. To validate the efficiency of the proposed scheme, the simulation has been abetted using network simulator (NS2) and the outcomes indicate that when the sensors are installed, a robust system can be obtained with improved data transfer between the base stations. Moreover, a fortified in-vehicular sensor can be fixed in each vehicle with minimized path loss.


Sign in / Sign up

Export Citation Format

Share Document