Load adaptive and fault tolerant distributed stream processing system for explosive stream data

Author(s):  
Myungcheol Lee ◽  
Miyoung Lee ◽  
Sung Jin Hur ◽  
Ikkyun Kim
2021 ◽  
Vol 11 (12) ◽  
pp. 5523
Author(s):  
Qian Ye ◽  
Minyan Lu

The main purpose of our provenance research for DSP (distributed stream processing) systems is to analyze abnormal results. Provenance for these systems is not nontrivial because of the ephemerality of stream data and instant data processing mode in modern DSP systems. Challenges include but are not limited to an optimization solution for avoiding excessive runtime overhead, reducing provenance-related data storage, and providing it in an easy-to-use fashion. Without any prior knowledge about which kinds of data may finally lead to the abnormal, we have to track all transformations in detail, which potentially causes hard system burden. This paper proposes s2p (Stream Process Provenance), which mainly consists of online provenance and offline provenance, to provide fine- and coarse-grained provenance in different precision. We base our design of s2p on the fact that, for a mature online DSP system, the abnormal results are rare, and the results that require a detailed analysis are even rarer. We also consider state transition in our provenance explanation. We implement s2p on Apache Flink named as s2p-flink and conduct three experiments to evaluate its scalability, efficiency, and overhead from end-to-end cost, throughput, and space overhead. Our evaluation shows that s2p-flink incurs a 13% to 32% cost overhead, 11% to 24% decline in throughput, and few additional space costs in the online provenance phase. Experiments also demonstrates the s2p-flink can scale well. A case study is presented to demonstrate the feasibility of the whole s2p solution.


2021 ◽  
Author(s):  
Hamed Hasibi ◽  
Saeed Sedighian Kashi

Fog computing brings cloud capabilities closer to the Internet of Things (IoT) devices. IoT devices generate a tremendous amount of stream data towards the cloud via hierarchical fog nodes. To process data streams, many Stream Processing Engines (SPEs) have been developed. Without the fog layer, the stream query processing executes on the cloud, which forwards much traffic toward the cloud. When a hierarchical fog layer is available, a complex query can be divided into simple queries to run on fog nodes by using distributed stream processing. In this paper, we propose an approach to assign stream queries to fog nodes using container technology. We name this approach Stream Queries Placement in Fog (SQPF). Our goal is to minimize end-to-end delay to achieve a better quality of service. At first, in the emulation step, we make docker container instances from SPEs and evaluate their processing delay and throughput under different resource configurations and queries with varying input rates. Then in the placement step, we assign queries among fog nodes by using a genetic algorithm. The practical approach used in SQPF achieves a near-the-best assignment based on the lowest application deadline in real scenarios, and evaluation results are evidence of this goal.


2019 ◽  
Vol 23 (2) ◽  
pp. 555-574 ◽  
Author(s):  
Xiaohui Wei ◽  
Yuan Zhuang ◽  
Hongliang Li ◽  
Zhiliang Liu

2008 ◽  
Vol 33 (1) ◽  
pp. 1-44 ◽  
Author(s):  
Magdalena Balazinska ◽  
Hari Balakrishnan ◽  
Samuel R. Madden ◽  
Michael Stonebraker

Sign in / Sign up

Export Citation Format

Share Document