fog computing
Recently Published Documents


TOTAL DOCUMENTS

3295
(FIVE YEARS 3135)

H-INDEX

71
(FIVE YEARS 60)

2022 ◽  
Vol 22 (3) ◽  
pp. 1-21
Author(s):  
Tongguang Ni ◽  
Jiaqun Zhu ◽  
Jia Qu ◽  
Jing Xue

Edge/fog computing works at the local area network level or devices connected to the sensor or the gateway close to the sensor. These nodes are located in different degrees of proximity to the user, while the data processing and storage are distributed among multiple nodes. In healthcare applications in the Internet of things, when data is transmitted through insecure channels, its privacy and security are the main issues. In recent years, learning from label proportion methods, represented by inverse calibration (InvCal) method, have tried to predict the class label based on class label proportions in certain groups. For privacy protection, the class label of the sample is often sensitive and invisible. As a compromise, only the proportion of class labels in certain groups can be used in these methods. However, due to their weak labeling scheme, their classification performance is often unsatisfactory. In this article, a labeling privacy protection support vector machine using privileged information, called LPP-SVM-PI, is proposed to promote the accuracy of the classifier in infectious disease diagnosis. Based on the framework of the InvCal method, besides using the proportion information of the class label, the idea of learning using privileged information is also introduced to capture the additional information of groups. The slack variables in LPP-SVM-PI are represented as correcting function and projected into the correcting space so that the hidden information of training samples in groups is captured by relaxing the constraints of the classification model. The solution of LPP-SVM-PI can be transformed into a classic quadratic programming problem. The experimental dataset is collected from the Coronavirus disease 2019 (COVID-19) transcription polymerase chain reaction at Hospital Israelita Albert Einstein in Brazil. In the experiment, LPP-SVM-PI is efficiently applied for COVID-19 diagnosis.


2022 ◽  
Vol 22 (3) ◽  
pp. 1-2
Author(s):  
Kaijian Xia ◽  
Wenbing Zhao ◽  
Alireza Jolfaei ◽  
Tamer Ozsu

2023 ◽  
Vol 55 (1) ◽  
pp. 1-39
Author(s):  
Kinza Sarwar ◽  
Sira Yongchareon ◽  
Jian Yu ◽  
Saeed Ur Rehman

Despite the rapid growth and advancement in the Internet of Things (IoT ), there are critical challenges that need to be addressed before the full adoption of the IoT. Data privacy is one of the hurdles towards the adoption of IoT as there might be potential misuse of users’ data and their identity in IoT applications. Several researchers have proposed different approaches to reduce privacy risks. However, most of the existing solutions still suffer from various drawbacks, such as huge bandwidth utilization and network latency, heavyweight cryptosystems, and policies that are applied on sensor devices and in the cloud. To address these issues, fog computing has been introduced for IoT network edges providing low latency, computation, and storage services. In this survey, we comprehensively review and classify privacy requirements for an in-depth understanding of privacy implications in IoT applications. Based on the classification, we highlight ongoing research efforts and limitations of the existing privacy-preservation techniques and map the existing IoT schemes with Fog-enabled IoT schemes to elaborate on the benefits and improvements that Fog-enabled IoT can bring to preserve data privacy in IoT applications. Lastly, we enumerate key research challenges and point out future research directions.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-51
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

The Internet of Things (IoT) revolutionised the way devices, and human beings, cooperate and interact. The interconnectivity and mobility brought by IoT devices led to extremely variable networks, as well as unpredictable information flows. In turn, security proved to be a serious issue for the IoT, far more serious than it has been in the past for other technologies. We claim that IoT devices need detailed descriptions of their behaviour to achieve secure default configurations, sufficient security configurability, and self-configurability. In this article, we propose S×C4IoT, a framework that addresses these issues by combining two paradigms: Security by Contract (S×C) and Fog computing. First, we summarise the necessary background such as the basic S×C definitions. Then, we describe how devices interact within S×C4IoT and how our framework manages the dynamic evolution that naturally result from IoT devices life-cycles. Furthermore, we show that S×C4IoT can allow legacy S×C-noncompliant devices to participate with an S×C network, we illustrate two different integration approaches, and we show how they fit into S×C4IoT. Last, we implement the framework as a proof-of-concept. We show the feasibility of S×C4IoT and we run different experiments to evaluate its impact in terms of communication and storage space overhead.


2022 ◽  
Author(s):  
Anupama Mampage ◽  
Shanika Karunasekera ◽  
Rajkumar Buyya

Serverless computing has emerged as an attractive deployment option for cloud applications in recent times. The unique features of this computing model include rapid auto-scaling, strong isolation, fine-grained billing options and access to a massive service ecosystem which autonomously handles resource management decisions. This model is increasingly being explored for deployments in geographically distributed edge and fog computing networks as well, due to these characteristics. Effective management of computing resources has always gained a lot of attention among researchers. The need to automate the entire process of resource provisioning, allocation, scheduling, monitoring and scaling, has resulted in the need for specialized focus on resource management under the serverless model. In this article, we identify the major aspects covering the broader concept of resource management in serverless environments and propose a taxonomy of elements which influence these aspects, encompassing characteristics of system design, workload attributes and stakeholder expectations. We take a holistic view on serverless environments deployed across edge, fog and cloud computing networks. We also analyse existing works discussing aspects of serverless resource management using this taxonomy. This article further identifies gaps in literature and highlights future research directions for improving capabilities of this computing model.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Lei Zhang

In order to improve the multisource data-driven fusion effect in the intelligent manufacturing process of complex products, based on the proposed adaptive fog computing architecture, this paper takes into account the efficient processing of complex product intelligent manufacturing services within the framework and the rational utilization of fog computing layer resources to establish a fog computing resource scheduling model. Moreover, this paper proposes a fog computing architecture for intelligent manufacturing services for complex products. The architecture adopts a three-layer fog computing framework, which can reasonably provide three types of services in the field of intelligent manufacturing. In addition, this study combines experimental research to verify the intelligent model of this article and counts the experimental results. From the analysis of experimental data, it can be seen that the complex product intelligent manufacturing system based on multisource data driven proposed in this paper meets the data fusion requirements of complex product intelligent manufacturing.


2022 ◽  
Author(s):  
Ozgur Umut Akgul ◽  
Wencan Mao ◽  
Byungjin Cho ◽  
Yu Xiao

<div>Edge/fog computing is a key enabling technology in 5G and beyond for fulfilling the tight latency requirements of compute-intensive vehicular applications such as cooperative driving. Concerning the spatio-temporal variation in the vehicular traffic flows and the demand for edge computing capacity generated by connected vehicles, vehicular fog computing (VFC) has been proposed as a cost-efficient deployment model that complements stationary fog nodes with mobile ones carried by moving vehicles. Accessing the feasibility and the applicability of such hybrid topology, and further planning and managing the networking and computing resources at the edge, require deep understanding of the spatio-temporal variations in the demand and the supply of edge computing capacity as well as the trade-offs between achievable Quality-of-Services and potential deployment and operating costs. To meet such requirements, we propose in this paper an open platform for simulating the VFC environment and for evaluating the performance and cost efficiency of capacity planning and resource allocation strategies under diverse physical conditions and business strategies. Compared with the existing edge/fog computing simulators, our platform supports the mobility of fog nodes and provides a realistic modeling of vehicular networking with the 5G and beyond network in the urban environment. We demonstrate the functionality of the platform using city-scale VFC capacity planning as example. The simulation results provide insights on the feasibility of different deployment strategies from both technical and financial perspectives.</div>


2022 ◽  
Author(s):  
Ozgur Umut Akgul ◽  
Wencan Mao ◽  
Byungjin Cho ◽  
Yu Xiao

<div>Edge/fog computing is a key enabling technology in 5G and beyond for fulfilling the tight latency requirements of compute-intensive vehicular applications such as cooperative driving. Concerning the spatio-temporal variation in the vehicular traffic flows and the demand for edge computing capacity generated by connected vehicles, vehicular fog computing (VFC) has been proposed as a cost-efficient deployment model that complements stationary fog nodes with mobile ones carried by moving vehicles. Accessing the feasibility and the applicability of such hybrid topology, and further planning and managing the networking and computing resources at the edge, require deep understanding of the spatio-temporal variations in the demand and the supply of edge computing capacity as well as the trade-offs between achievable Quality-of-Services and potential deployment and operating costs. To meet such requirements, we propose in this paper an open platform for simulating the VFC environment and for evaluating the performance and cost efficiency of capacity planning and resource allocation strategies under diverse physical conditions and business strategies. Compared with the existing edge/fog computing simulators, our platform supports the mobility of fog nodes and provides a realistic modeling of vehicular networking with the 5G and beyond network in the urban environment. We demonstrate the functionality of the platform using city-scale VFC capacity planning as example. The simulation results provide insights on the feasibility of different deployment strategies from both technical and financial perspectives.</div>


2022 ◽  
pp. 19-37
Author(s):  
Divya Gupta ◽  
Shalli Rani ◽  
Syed Hassan Ahmed Shah
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document