The improvement of power quality in a mono-phase system through a single-phase active filter using MATLAB/simulink

Author(s):  
Marian-Stefan Nicolae ◽  
Ionut-Daniel Smarandescu ◽  
Alexandru Tudorascu
2019 ◽  
Vol 16 (3) ◽  
pp. 289-310 ◽  
Author(s):  
Vinay Naguboina ◽  
Satish Gudey

In this work, a Three phase Transformerless Hybrid Series Active Power Filter (THSeAF) based on Sliding Mode Control (SMC) is proposed to mitigate the voltage and current distortions present in an electrical distribution systems (EDS). A Sliding Mode Controller is designed by controlling the parameters present on the load side as well as source side of the system. Three separate voltage source converters (VSC) are used. The mod1elling of the system is derived by considering a single-phase system by using state space analysis. The frequency response characteristics have been derived for the single-phase system and the stability of the system is studied. It is observed that the system has good stability margins when the SMC is applied at the source side compared to load side. Simulation results obtained in PSCAD/EMTDC v4.6 have been observed for power quality issues like voltage sags, voltage swells, voltage distortions, voltage unbalances and their concurrent occurrence. The approach of stationary reference frame was used for source side control and PQ theory is used for load side control. It is observed that the proposed controller works well in obtaining a stable and constant load voltage during these power quality issues. The difference in settling time observed is around 4 ms for the load side and source side control. The THD present in the load voltage is near about 1%. The SMC is found to be robust in obtaining a constant load voltage with low THD and an improved power factor.


Power Quality (PQ) is becoming an important issue as the increase in electricity use continues. Reduction in the quality of electrical power is due to various kinds of voltage related problems such as voltage sag, voltage swell, short-lived interruptions, harmonic distortions, notches, flickers, spikes and transients. The major power quality problems in single phase system are voltage sag and harmonics. The Mitigation of voltage sag and harmonics in single phase system under the distorted power supply situations was effectively eliminated with Dynamic Voltage Restorer (DVR). The single-phase SRFT (Synchronous Reference Frame Theory) was implemented in the controller design for DVR. DVR will produce required amount of instantaneous voltage to be injected. Designed controller technique will utilize the function of Moving Average Filter (MAF) for getting the fundamental quantity of positive sequence component from the disturbed supply voltage. Experimental results of DVR prove its effectiveness to mitigate voltage sag and harmonics during disturbed power supply condition.


Sign in / Sign up

Export Citation Format

Share Document