An Optimization Method for Pattern Formation in Dynamic Environment*

Author(s):  
Fangfang Zhang ◽  
Tingting Wang ◽  
Qiyan Li ◽  
Peng Cui ◽  
Yanhong Liu
2021 ◽  
Author(s):  
Jonas Berlin ◽  
Georg Hess ◽  
Anton Karlsson ◽  
William Ljungbergh ◽  
Ze Zhang ◽  
...  

This paper presents an approach to collision-free, long-range trajectory generation for a mobile robot in an industrial environment with static and dynamic obstacles. For the long range planning a visibility graph together with A* is used to find a collision-free path with respect to the static obstacles. This path is used as a reference path to the trajectory planning algorithm that in addition handles dynamic obstacles while complying with the robot dynamics and constraints. A Nonlinear Model Predictive Control (NMPC) solver generates a collision-free trajectory by staying close the initial path but at the same time obeying all constraints. The NMPC problem is solved efficiently by leveraging the new numerical optimization method Proximal Averaged Newton for Optimal Control (PANOC). The algorithm was evaluated by simulation in various environments and successfully generated feasible trajectories spanning hundreds of meters in a tractable time frame.


2018 ◽  
Author(s):  
Neta Rahimi ◽  
Inna Averbukh ◽  
Shari Carmon ◽  
Eyal D. Schejter ◽  
Naama Barkai ◽  
...  

AbstractEstablishment of morphogen gradients in the early Drosophila embryo is challenged by a diffusible extracellular milieu, and rapid nuclear divisions that occur at the same time. To understand how a sharp gradient is formed within this dynamic environment, we followed the generation of graded nuclear Dorsal (Dl) protein, the hallmark of pattern formation along the dorso-ventral axis, in live embryos. We show that a sharp gradient is formed through extracellular, diffusion-based morphogen shuttling that progresses through several nuclear divisions. Perturbed shuttling in wntD mutant embryos results in a flat activation peak and aberrant gastrulation. Re-entry of Dl into the nuclei at each cycle refines the signaling output, by guiding graded accumulation of the T48 transcript that drives patterned gastrulation. We conclude that diffusion-based ligand shuttling, coupled with dynamic readout, establishes a refined pattern within the diffusible environment of early embryos.


2021 ◽  
pp. 1-10
Author(s):  
Tingting Wang ◽  
Fangfang Zhang ◽  
Jianbin Xin ◽  
Yanhong Liu

2018 ◽  
Vol 8 (9) ◽  
pp. 1546 ◽  
Author(s):  
Peilong Yuan ◽  
Wei Han ◽  
Xichao Su ◽  
Jie Liu ◽  
Jingyu Song

The efficient scheduling of carrier aircraft support operations in the flight deck is important for battle performances. The supporting operations and maintenance processes involve multiple support resources, complex scheduling process, and multiple constraints; the efficient coordination of these processes can be considered a multi-resource constrained multi-project scheduling problem (MRCMPSP), which is a complex non-deterministic polynomial-time hard (NP-hard) problem. The renewable resources include the operational crews, resource stations, and operational spaces, and the non-renewable resources include oil, gas, weapons, and electric power. An integer programming mathematical model is established to solve this problem. A periodic and event-driven rolling horizon (RH) scheduling strategy inspired by the RH optimization method from predictive control technology is presented for the dynamic scheduling environment. The periodic horizon scheduling strategy can track the changes of the carrier aircraft supporting system, and the improved event-driven mechanism can avoid unnecessary scheduling with effective resource allocation under uncertain conditions. The dual population genetic algorithm (DPGA) is designed to solve the large-scale scheduling problem. The activity list encoding method is proposed, and a new adaptive crossover and mutation strategy is designed to improve the global exploration ability. The double schedule for leftward and rightward populations is integrated into the genetic process of alternating iterations to improve the convergence speed and decrease the computation amount. The computational results show that our approach is effective at solving the scheduling problem in the dynamic environment, as well as making better decisions regarding disruption on a real-time basis.


2021 ◽  
Author(s):  
Jonas Berlin ◽  
Georg Hess ◽  
Anton Karlsson ◽  
William Ljungbergh ◽  
Ze Zhang ◽  
...  

This paper presents an approach to collision-free, long-range trajectory generation for a mobile robot in an industrial environment with static and dynamic obstacles. For the long range planning a visibility graph together with A* is used to find a collision-free path with respect to the static obstacles. This path is used as a reference path to the trajectory planning algorithm that in addition handles dynamic obstacles while complying with the robot dynamics and constraints. A Nonlinear Model Predictive Control (NMPC) solver generates a collision-free trajectory by staying close the initial path but at the same time obeying all constraints. The NMPC problem is solved efficiently by leveraging the new numerical optimization method Proximal Averaged Newton for Optimal Control (PANOC). The algorithm was evaluated by simulation in various environments and successfully generated feasible trajectories spanning hundreds of meters in a tractable time frame.


1993 ◽  
Vol 3 (6) ◽  
pp. 865-889 ◽  
Author(s):  
Norbert Schwenk ◽  
Hans Wolfgang Spiess
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document