DOA estimation of coherent signals on uniform circular array in the presence of mutual coupling

Author(s):  
Li Shuai ◽  
Chen Hui ◽  
Cong Haixia
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhi-Chao Sha ◽  
Zhang-Meng Liu ◽  
Zhi-Tao Huang ◽  
Yi-Yu Zhou

This paper addresses the problem of direction-of-arrival (DOA) estimation of coherent signals in the presence of unknown mutual coupling, and an autoregression (AR) model-based method is proposed. The effects of mutual coupling can be eliminated by the inherent mechanism of the proposed algorithm, so the DOAs can be accurately estimated without any calibration sources. After the mixing matrix is estimated by independent component analysis (ICA), several parameter equations are established upon the mixing matrix. Finally, all DOAs of coherent signals are estimated by solving these equations. Compared with traditional methods, the proposed method has higher angle resolution and estimation accuracy. Simulation results demonstrate the effectiveness of the algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 878
Author(s):  
Baoping Wang ◽  
Junhao Zheng

To effectively find the direction of non-circular signals received by a uniform linear array (ULA) in the presence of non-negligible perturbations between array elements, i.e., mutual coupling, in colored noise, a direction of arrival (DOA) estimation approach in the context of high order statistics is proposed in this correspondence. Exploiting the non-circularity hidden behind a certain class of wireless communication signals to build up an augmented cumulant matrix, and carrying out a reformulation of the distorted steering vector to extract the angular information from the unknown mutual coupling, by exploiting the characteristic of mutual coupling, i.e., a limited operating range and an inverse relation of coupling effects to interspace, we develop a MUSIC-like estimator based on the rank-reduction (RARE) technique to directly determine directions of incident signals without mutual coupling compensation. Besides, we provide a solution to the problem of coherency between signals and mutual coupling between sensors co-existing, by selecting a middle sub-array to mitigate the undesirable effects and exploiting the rotation-invariant property to blindly separate the coherent signals into different groups to enhance the degrees of freedom. Compared with the existing robust DOA methods to the unknown mutual coupling under the framework of fourth-order cumulants (FOC), our work takes advantage of the larger virtual array and is able to resolve more signals due to greater degrees of freedom. Additionally, as the effective aperture is virtually extended, the developed estimator can achieve better performance under scenarios with high degree of mutual coupling between two sensors. Simulation results demonstrate the validity and efficiency of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Song Liu ◽  
Lisheng Yang ◽  
Shizhong Yang ◽  
Qingping Jiang ◽  
Haowei Wu

A blind direction-of-arrival (DOA) estimation algorithm based on the estimation of signal parameters via rotational invariance techniques (ESPRIT) is proposed for a uniform circular array (UCA) when strong electromagnetic mutual coupling is present. First, an updated UCA model with mutual coupling in a discrete Fourier transform (DFT) beam space is deduced, and the new manifold matrix is equal to the product of a centrosymmetric diagonal matrix and a Vandermonde-structure matrix. Then we carry out blind DOA estimation through a modified ESPRIT method, thus avoiding the need for spatial angular searching. In addition, two mutual coupling parameter estimation methods are presented after the DOAs have been estimated. Simulation results show that the new algorithm is reliable and effective especially for closely spaced signals.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 40271-40278 ◽  
Author(s):  
Yuexian Wang ◽  
Xin Yang ◽  
Jian Xie ◽  
Ling Wang ◽  
Brian W.-H. Ng

2010 ◽  
Vol 32 (3) ◽  
pp. 604-608 ◽  
Author(s):  
Xin Xie ◽  
Guo-lin Li ◽  
Hua-wen Liu

Sign in / Sign up

Export Citation Format

Share Document