scholarly journals Cumulant-Based DOA Estimation of Noncircular Signals against Unknown Mutual Coupling

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 878
Author(s):  
Baoping Wang ◽  
Junhao Zheng

To effectively find the direction of non-circular signals received by a uniform linear array (ULA) in the presence of non-negligible perturbations between array elements, i.e., mutual coupling, in colored noise, a direction of arrival (DOA) estimation approach in the context of high order statistics is proposed in this correspondence. Exploiting the non-circularity hidden behind a certain class of wireless communication signals to build up an augmented cumulant matrix, and carrying out a reformulation of the distorted steering vector to extract the angular information from the unknown mutual coupling, by exploiting the characteristic of mutual coupling, i.e., a limited operating range and an inverse relation of coupling effects to interspace, we develop a MUSIC-like estimator based on the rank-reduction (RARE) technique to directly determine directions of incident signals without mutual coupling compensation. Besides, we provide a solution to the problem of coherency between signals and mutual coupling between sensors co-existing, by selecting a middle sub-array to mitigate the undesirable effects and exploiting the rotation-invariant property to blindly separate the coherent signals into different groups to enhance the degrees of freedom. Compared with the existing robust DOA methods to the unknown mutual coupling under the framework of fourth-order cumulants (FOC), our work takes advantage of the larger virtual array and is able to resolve more signals due to greater degrees of freedom. Additionally, as the effective aperture is virtually extended, the developed estimator can achieve better performance under scenarios with high degree of mutual coupling between two sensors. Simulation results demonstrate the validity and efficiency of the proposed method.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1914
Author(s):  
Jian Xie ◽  
Qiuping Wang ◽  
Yuexian Wang ◽  
Xin Yang

Digital communication signals in wireless systems may possess noncircularity, which can be used to enhance the degrees of freedom for direction-of-arrival (DOA) estimation in sensor array signal processing. On the other hand, the electromagnetic characteristics between sensors in uniform rectangular arrays (URAs), such as mutual coupling, may significantly deteriorate the estimation performance. To deal with this problem, a robust real-valued estimator for rectilinear sources was developed to alleviate unknown mutual coupling in URAs. An augmented covariance matrix was built up by extracting the real and imaginary parts of observations containing the circularity and noncircularity of signals. Then, the actual steering vector considering mutual coupling was reparameterized to make the rank reduction (RARE) property available. To reduce the computational complexity of two-dimensional (2D) spectral search, we individually estimated y-axis and x-axis direction-cosines in two stages following the principle of RARE. Finally, azimuth and elevation angle estimates were determined from the corresponding direction-cosines respectively. Compared with existing solutions, the proposed method is more computationally efficient, involving real-valued operations and decoupled 2D spectral searches into twice those of one-dimensional searches. Simulation results verified that the proposed method provides satisfactory estimation performance that is robust to unknown mutual coupling and close to the counterparts based on 2D spectral searches, but at the cost of much fewer calculations.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012029
Author(s):  
Shijie Yue ◽  
Guoping Hu ◽  
Chenghong Zhan ◽  
Yule Zhang ◽  
Mingming Zhu

Abstract Aiming at the problem of the small aperture of the traditional MIMO radar with virtual degrees of freedom, this paper designs a high degree of freedom space-limited MIMO radar. Both the transmitting and receiving elements of this radar adopt a sparse array structure. Array composition, the receiving array element is composed of a single array element and a uniform linear array. The number of virtual array elements can be realized by using array elements. Compared with the traditional sparse array MIMO radar with the same number of elements, the designed space-limited sparse array MIMO radar has a larger aperture. Experimental simulations verify the superiority of the space-limited MIMO radar angle estimation.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhi-Chao Sha ◽  
Zhang-Meng Liu ◽  
Zhi-Tao Huang ◽  
Yi-Yu Zhou

This paper addresses the problem of direction-of-arrival (DOA) estimation of coherent signals in the presence of unknown mutual coupling, and an autoregression (AR) model-based method is proposed. The effects of mutual coupling can be eliminated by the inherent mechanism of the proposed algorithm, so the DOAs can be accurately estimated without any calibration sources. After the mixing matrix is estimated by independent component analysis (ICA), several parameter equations are established upon the mixing matrix. Finally, all DOAs of coherent signals are estimated by solving these equations. Compared with traditional methods, the proposed method has higher angle resolution and estimation accuracy. Simulation results demonstrate the effectiveness of the algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 994
Author(s):  
Baoping Wang ◽  
Junhao Zheng

Recently developed super nested array families have drawn much attention owing to their merits on keeping the benefits of the standard nested arrays while further mitigating coupling in dense subarray portions. In this communication, a new mutual coupling model for nested arrays is constructed. Analyzing the structure of the newly formed mutual coupling matrix, a transformation of the distorted steering vector to separate angular information from the mutual coupling coefficients is revealed. By this property, direction of arrival (DOA) estimates can be determined via a grid search for the minimum of a determinant function of DOA, which is induced by the rank reduction property. We also extend the robust DOA estimation method to accommodate the unknown mutual coupling and gain-phase mismatches in the nested array. Compared with the schemes of super nested array families on reducing the mutual coupling effects, the solutions presented in this paper has two advantages: (a) It is applicable to the standard nested arrays without rearranging the configuration to increase the inter-element spacing, alleviating the cross talk in dense uniform linear arrays (ULAs) as well as gain-phase errors in sparse ULA parts; (b) Perturbations in nested arrays are estimated in colored noise, which is significant but rarely discussed before. Simulations results corroborate the superiority of the proposed methods using fourth-order cumulants.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Chenghong Zhan ◽  
Guoping Hu ◽  
Zixin Zhang ◽  
Ziang Feng

In this paper, we initiated a method to estimate the direction of arrival (DOA) of far-field, narrowband, and incoherent targets using coprime array. First, we proposed a coprime array structure and analysed the distribution of difference coarray (DCA). The degrees of freedom (DOF) of the proposed coprime array became clearer by referring to the DCA conception. However, previous algorithm only uses the continuous virtual array, which causes the virtual array elements in the repeated position being abandoned. Therefore, the paper analyses the distribution of virtual array based on DCA conception and averages the receiving signal on these redundant virtual array elements to increase the utilization of receiving data. As a result, the algorithm has high precision in parameter estimation. Simulation results have shown the superiority of the proposed algorithm.


Author(s):  
Yarong Ding ◽  
Shiwei Ren ◽  
Weijiang Wang ◽  
Chengbo Xue

AbstractThe sum–difference coarray is the union of difference coarray and the sum coarray, which is capable to obtain a higher number of degrees of freedom (DOF) than the difference coarray. However, this method fails to use all information provided by the coprime array because of the existence of holes. In this paper, we introduce the virtual array interpolation into the sum–difference coarray domain. After interpolating the virtual array, we estimate the DOA by reconstructing the covariance matrix to resolve an atomic norm minimization problem in a gridless way. The proposed method is gridless and can effectively utilize the DOF of a larger virtual array. Numerical simulation results verify the effectiveness and the superior performance of the proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chao Liu ◽  
Shunian Yin

The limited space of a conformal array may lead to a serious mutual coupling effect, which will significantly affect the performance of direction of arrival (DOA) estimation algorithms. In this paper, an efficient 2-D direction finding method is developed in the presence of unknown mutual coupling for the uniform cylindrical conformal array (CCA). To avoid the time-consuming two-dimensional spectral peak searching, the 2-D DOA estimation is decoupled and divided into two 1-D DOA estimations. Elevation is first estimated based on a subarray estimation of signal parameters via rotation invariant technique (ESPRIT), and then azimuth is estimated based on the rank reduction (RARE) method by using the elevation estimation result. Consequently, the mutual coupling coefficients can be estimated after getting the DOA estimates. The proposed method can well calibrate the mutual coupling effect of a cylindrical array with a low computational complexity. The final simulation results corroborate our analysis.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yan-kui Zhang ◽  
Hai-yun Xu ◽  
Da-ming Wang ◽  
Bin Ba ◽  
Si-yao Li

The existing coprime array is mainly applicable to circular sources, while the virtual array degree of freedom (DOF) for noncircular sources is enhanced limitedly. In order to perfect the array DOF and the direction of arrival (DOA) estimation accuracy, a high degree of freedom sparse array design method for noncircular sources is put forward. Firstly, the method takes the advantages of the characteristic of the noncircular sources to expand the array manifold and then explores and solves the location distribution of the physical array sensors on the basis of the virtual array model with the help of the searching approach. The array configuration can obtain the longest continuous virtual array. The comparisons between the proposed array configuration and the common array configurations are advanced. The simulation experiments show that the sparse array presented in this paper can effectively increase the continuous virtual array aperture of noncircular sources, improve the array DOF and DOA estimation accuracy, and achieve the purpose of better estimation of multiple DOAs in underdetermined conditions.


Sign in / Sign up

Export Citation Format

Share Document