A Study of Caprock Integrity in Geological CO2 Sequestration by Using Passive Seismic Monitoring System Based on 5G network

Author(s):  
Enji Sun ◽  
Erik Westman
2019 ◽  
Author(s):  
Bettina Goertz-Allmann ◽  
D. Kühn ◽  
K. Iranpour ◽  
M. Jordan ◽  
Benjamin Udo Emmel ◽  
...  

2012 ◽  
Vol 48 (3) ◽  
pp. 256-269 ◽  
Author(s):  
A. A. Malovichko ◽  
I. P. Gabsatarova ◽  
R. R. Kashirgova ◽  
S. M. Dolov

Author(s):  
B. M. Shubik ◽  

The processes of development of hydrocarbon deposits are accompanied, as a rule, by an increase in the level of seismicity and, in particular, by the occurrence of technogenic earthquakes and other deformation phenomena associated with changes in the geodynamic regime. To monitor deformation and geodynamic processes, a seismic monitoring service should be organized. A similar monitoring system is also required for the analysis of aftershock and volcanic activity. Monitoring technology should be based on the use of reliable and fast methods of automatic detection and localization of seismic events of various scales. Traditional approaches to the detection and localization of earthquake epicenters and hypocenters are based on the analysis of data recorded by one or more single seismic stations. In that case, seismic event coordinates are estimated by means of signal extraction from noise and accurately measuring arrival times of a number of specific phases of the seismic signal at each recording point. Existing computational techniques have inherited this traditional approach. However, automatic procedures based on the ideology of manual processing turn out to be extremely laborious and ineffective due to the complexity of algorithms adequate to the actions of an experienced geophysicist-interpreter. The article contains a description of new approaches to the synthesis of automatic monitoring systems, which are based on the principles of emission tomography, use of spatial registration systems, energy analysis of wave fields and methods of converting real waveforms into low-frequency model signals (so-called filter masks/templates). The monitoring system was successfully tested in the process of detecting and locating the epicenters and hypocenters of 19 weak local earthquakes in Israel, as well as a quarry explosion.


1994 ◽  
Vol 37 (3) ◽  
Author(s):  
F. Ringdal

The UN Conference on Disarmament's Group of Scientific Experts (GSE) was established in 1976 to consider international co operative measures to detect and identify seismic events. Over the years, the GSE has developed and tested several concepts for an International Seismic Monitoring System (ISMS) for the purpose of assisting in the verification of a potential comprehensive test ban treaty. The GSE is now planning its third global technical test. (GSETT 3) in order to test new and revisled concepts for an ISMS. GSETT 3 wili be an unprecedented global effort to conduct an operationally realistic test of rapid collection, distribution and processing of seismie data. A global network of seismograph stations will provide data to an International Data Center, where the data will be processed an results made available to participants. The full scaIe phase of GSETT 3 is scheduled to begin in January 1995.


Sign in / Sign up

Export Citation Format

Share Document