A Unified Framework Based on the Level Set Approach for Segmentation of Unconstrained Double-Sided Document Images Suffering from Bleed-Through

Author(s):  
Reza Farrahi Moghaddam ◽  
David Rivest-Hénault ◽  
Itay Bar-Yosef ◽  
Mohamed Cheriet
Author(s):  
Mamta Raju Jotkar ◽  
Daniel Rodriguez ◽  
Bruno Marins Soares

2006 ◽  
Vol 215 (1) ◽  
pp. 98-132 ◽  
Author(s):  
Sunitha Nagrath ◽  
Kenneth Jansen ◽  
Richard T. Lahey ◽  
Iskander Akhatov

2016 ◽  
pp. 239-246
Author(s):  
Kamal Das ◽  
Sandeep Sandha ◽  
Eduardo Rodrigues ◽  
U Mello ◽  
Ignacio Carol ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 1133-1138 ◽  
Author(s):  
Roland E. Logé ◽  
M. Bernacki ◽  
H. Resk ◽  
H. Digonnet ◽  
T. Coupez

The development of a digital material framework is presented, allowing to build virtual microstructures in agreement with experimental data. The construction of the virtual material consists in building a multi-level Voronoï tessellation. A polycrystalline microstructure made of grains and sub-grains can be obtained in a random or deterministic way. A corresponding finite element mesh can be generated automatically in 3D, and used for the simulation of mechanical testing under large strain. In the examples shown in this work, the initial mesh was non uniform and anisotropic, taking into account the presence of interfaces between grains and sub-grains. Automatic remeshing was performed due to the large strains, and maintained the non uniform and anisotropic character of the mesh. A level set approach was used to follow the grain boundaries during the deformation. The grain constitutive law was either a viscoplastic power law, or a crystallographic formulation based on crystal plasticity. Stored energies and precise grain boundary network geometries were obtained directly from the deformed digital sample. This information was used for subsequent modelling of grain growth with the level set approach, on the same mesh.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meisam Takalloozadeh ◽  
Gil Ho Yoon

Purpose Body forces are always applied to structures in the form of the weight of materials. In some cases, they can be neglected in comparison with other applied forces. Nevertheless, there is a wide range of structures in civil and mechanical engineering in which weight or other types of body forces are the main portions of the applied loads. The optimal topology of these structures is investigated in this study. Design/methodology/approach Topology optimization plays an increasingly important role in structural design. In this study, the topological derivative under body forces is used in a level-set-based topology optimization method. Instability during the optimization process is addressed, and a heuristic solution is proposed to overcome the challenge. Moreover, body forces in combination with thermal loading are investigated in this study. Findings Body forces are design-dependent loads that usually add complexity to the optimization process. Some problems have already been addressed in density-based topology optimization methods. In the present study, the body forces in a topological level-set approach are investigated. This paper finds that the used topological derivative is a flat field that causes some instabilities in the optimization process. The main novelty of this study is a technique used to overcome this challenge by using a weighted combination. Originality/value There is a lack of studies on level-set approaches that account for design-dependent body forces and the proposed method helps to understand the challenges posed in such methods. A powerful level-set-based approach is used for this purpose. Several examples are provided to illustrate the efficiency of this method. Moreover, the results show the effect of body forces and thermal loading on the optimal layout of the structures.


Sign in / Sign up

Export Citation Format

Share Document