Identification of Power Quality Disturbance Using Neural Network

Author(s):  
Pavan Patil ◽  
Kishore Muley ◽  
Rahul Agrawal
Author(s):  
Fei Long ◽  
Fen Liu ◽  
Xiangli Peng ◽  
Zheng Yu ◽  
Huan Xu ◽  
...  

In order to improve the electrical quality disturbance recognition ability of the neural network, this paper studies a depth learning-based power quality disturbance recognition and classification method: constructing a power quality perturbation model, generating training set; construct depth neural network; profit training set to depth neural network training; verify the performance of the depth neural network; the results show that the training set is randomly added 20DB-50DB noise, even in the most serious 20dB noise conditions, it can reach more than 99% identification, this is a tradition. The method is impossible to implement. Conclusion: the deepest learning-based power quality disturbance identification and classification method overcomes the disadvantage of the selection steps of artificial characteristics, poor robustness, which is beneficial to more accurately and quickly discover the category of power quality issues.


2019 ◽  
Vol 9 (18) ◽  
pp. 3681 ◽  
Author(s):  
Kewei Cai ◽  
Taoping Hu ◽  
Wenping Cao ◽  
Guofeng Li

This paper presents a hybrid approach combining phase space reconstruction (PSR) with a convolutional neural network (CNN) for power quality disturbance (PQD) classification. Firstly, a PSR technique is developed to transform a 1D voltage disturbance signal into a 2D image file. Then, a CNN model is developed for the image classification. The feature maps are extracted automatically from the image file and different patterns are derived from variables in CNN. A set of synthetic signals, as well as operational measurements, are used to validate the proposed method. Moreover, the test results are also compared with existing methods, including empirical mode decomposition (EMD) with balanced neural tree (BNT), S-transform (ST) with neural network (NN) and decision tree (DT), hybrid ST with DT, adaptive linear neuron (ADALINE) with feedforward neural network (FFNN), and variational mode decomposition (VMD) with deep stochastic configuration network (DSCN). Based on deep learning algorithms, the proposed method is capable of providing more accurate results without any human intervention for PQDs. It also enables the planning of PQ remedy actions.


Sign in / Sign up

Export Citation Format

Share Document