classification method
Recently Published Documents


TOTAL DOCUMENTS

3535
(FIVE YEARS 1785)

H-INDEX

46
(FIVE YEARS 18)

Author(s):  
Alper Yılmaz ◽  
Ahmet Küçüker ◽  
Gökay Bayrak ◽  
Davut Ertekin ◽  
Miadreza Shafie-Khah ◽  
...  

2022 ◽  
Vol 72 ◽  
pp. 103296
Author(s):  
Liang Guo ◽  
Peiduo Huang ◽  
Dehao Huang ◽  
Zilan Li ◽  
Chenglong She ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 813
Author(s):  
Chaofeng Liu ◽  
He Yin ◽  
Yixin Sun ◽  
Ling Wang ◽  
Xiaodong Guo

Accurately identifying the key nodes of the road network and focusing on its management and control is an important means to improve the robustness and invulnerability of the road network. In this paper, a classification and identification method of key nodes in urban road networks based on multi-attribute evaluation and modification was proposed. Firstly, the emergency function guarantee grade of road network nodes was divided by comprehensively considering the importance of road network nodes, the consequences of failure, and the degree of difficulty of recovery. The evaluation indexes were selected according to the local attributes, global attributes, and functional attributes of the road network topology. The spatial distribution patterns of the evaluation indexes of the nodes were analyzed. The dynamic classification method was used to cluster the attributes of the road network nodes, and the TOPSIS method was used to comprehensively evaluate the importance ranking of the road network nodes. Attribute clustering of road network nodes by dynamic classification method (DT) and the TOPSIS method was used to comprehensively evaluate the ranking of the importance of road network nodes. Then, combined with the modification of the comprehensive evaluation and ranking of the importance of the road network nodes, the emergency function support classification results of the road network nodes were obtained. Finally, the method was applied to the road network within the second Ring Road of Beijing. It was compared with the clustering method of self-organizing competitive neural networks. The results show that this method can identify the key nodes of the road network more accurately. The first-grade key nodes are all located at the more important intersections on expressways and trunk roads. The spatial distribution pattern shows a “center-edge” pattern, and the important traffic corridors of the road network show a “five vertical and five horizontal” pattern.


2022 ◽  
Author(s):  
Yaohui Liu ◽  
Qipeng Cheng ◽  
Huiying Xu ◽  
Peida Zhan

<p>This study proposed a longitudinal Hamming distance discrimination (Long-HDD) method to improve the application of longitudinal cognitive diagnosis in practical teaching by introducing a simple computation and less time-consuming nonparametric classification method—HDD—into longitudinal diagnostic data processing. Compared with the HDD, the proposed method represents correlation or dependence between adjacent time points of the same student using Hamming distance in anticipation of using information from the previous time point to improve the classification accuracy at the current time point. A simulation study was conducted to explore the performance of the proposed method in longitudinal diagnostic data analysis and to compare the performance of the proposed method with the HDD and a parametric longitudinal diagnostic classification model. The findings suggest that (1) the Long-HDD can provide high classification accuracy in longitudinal diagnostic data analysis; (2) compared with the parametric model, the Long-HDD is almost unaffected by sample size and performs better than the parametric model in small sample sizes; and (3) the Long-HDD consumes much less computing time than the parametric model. Overall, the Long-HDD is well suited to analyzing longitudinal diagnostic data and can provide speedy diagnostic feedback due to its convenient computation, which is especially significant in small-scale assessments at the classroom and school levels.</p>


2022 ◽  
Author(s):  
Yaohui Liu ◽  
Qipeng Cheng ◽  
Huiying Xu ◽  
Peida Zhan

<p>This study proposed a longitudinal Hamming distance discrimination (Long-HDD) method to improve the application of longitudinal cognitive diagnosis in practical teaching by introducing a simple computation and less time-consuming nonparametric classification method—HDD—into longitudinal diagnostic data processing. Compared with the HDD, the proposed method represents correlation or dependence between adjacent time points of the same student using Hamming distance in anticipation of using information from the previous time point to improve the classification accuracy at the current time point. A simulation study was conducted to explore the performance of the proposed method in longitudinal diagnostic data analysis and to compare the performance of the proposed method with the HDD and a parametric longitudinal diagnostic classification model. The findings suggest that (1) the Long-HDD can provide high classification accuracy in longitudinal diagnostic data analysis; (2) compared with the parametric model, the Long-HDD is almost unaffected by sample size and performs better than the parametric model in small sample sizes; and (3) the Long-HDD consumes much less computing time than the parametric model. Overall, the Long-HDD is well suited to analyzing longitudinal diagnostic data and can provide speedy diagnostic feedback due to its convenient computation, which is especially significant in small-scale assessments at the classroom and school levels.</p>


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Xiaohong Zhu ◽  
Jianhong Jia ◽  
Zhongwei Cai

In order to study the fracture ability classification of rock mass under the cracking action of supercritical CO2 phase transition, based on the classification theory of rock mass in blasting engineering, an analytic hierarchy process (AHP)-entropy weight method (EWM) and the cloud model classification method for rock mass cracking under CO2 phase transformation are proposed. In this method, rock density, rock tensile strength, rock wave impedance, and rock mass integrity coefficient are used as the factors to determine the level of rock mass fracturing, and the evaluation index system of rock mass fracturing is established. Through this evaluation method, the rock mass in a reconstruction project section of Nyingchi, Tibet, is classified and evaluated. The results present that this new classification method of rock mass fracture ability uses AHP–EWM to carry out the weight distribution of the classification index. In addition, it is combined with the cloud model for the classification division, overcoming the traditional classification method fixed with appraisal pattern flaw. Therefore, it has validity and feasibility. According to the characteristics of fracture ability, the rock masses in the area to be rebuilt on the Tibet Highway are divided into grade II, grade III, and grade IV, which provides scientific guidance for the construction of the project.


2022 ◽  
Vol 14 (2) ◽  
pp. 325
Author(s):  
Daniela Palacios-Lopez ◽  
Thomas Esch ◽  
Kytt MacManus ◽  
Mattia Marconcini ◽  
Alessandro Sorichetta ◽  
...  

Large-scale gridded population datasets available at the global or continental scale have become an important source of information in applications related to sustainable development. In recent years, the emergence of new population models has leveraged the inclusion of more accurate and spatially detailed proxy layers describing the built-up environment (e.g., built-area and building footprint datasets), enhancing the quality, accuracy and spatial resolution of existing products. However, due to the consistent lack of vertical and functional information on the built-up environment, large-scale gridded population datasets that rely on existing built-up land proxies still report large errors of under- and overestimation, especially in areas with predominantly high-rise buildings or industrial/commercial areas, respectively. This research investigates, for the first time, the potential contributions of the new World Settlement Footprint—3D (WSF3D) dataset in the field of large-scale population modelling. First, we combined a Random Forest classifier with spatial metrics derived from the WSF3D to predict the industrial versus non-industrial use of settlement pixels at the Pan-European scale. We then examined the effects of including volume and settlement use information into frameworks of dasymetric population modelling. We found that the proposed classification method can predict industrial and non-industrial areas with overall accuracies and a kappa-coefficient of ~84% and 0.68, respectively. Additionally, we found that both, integrating volume and settlement use information considerably increased the accuracy of population estimates between 10% and 30% over commonly employed models (e.g., based on a binary settlement mask as input), mainly by eliminating systematic large overestimations in industrial/commercial areas. While the proposed method shows strong promise for overcoming some of the main limitations in large-scale population modelling, future research should focus on improving the quality of the WFS3D dataset and the classification method alike, to avoid the false detection of built-up settlements and to reduce misclassification errors of industrial and high-rise buildings.


2022 ◽  
Vol 43 (2) ◽  
pp. 532-548
Author(s):  
Tao Qi ◽  
Haowei Zhu ◽  
Junguo Zhang ◽  
Zihe Yang ◽  
Lei Chai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document