Study on Preparation Process and Properties of CVD Tungsten Composite Coating on TC4 Titanium Alloy Surface

Author(s):  
Long WU ◽  
Jie MA ◽  
Hong-yi LI ◽  
Jian-zhong WEI ◽  
Wen-tao CHENG
2021 ◽  
Vol 1885 (3) ◽  
pp. 032046
Author(s):  
Junqi Huang ◽  
Jie Ma ◽  
Long Wu ◽  
Jianzhong Wei ◽  
Hongyi Li

2012 ◽  
Vol 190-191 ◽  
pp. 567-570
Author(s):  
Jian Jun Hao ◽  
Liang Gao ◽  
Shu Hua Yang ◽  
Xiong Zhuang Li ◽  
Yue Jin Ma

In order to improve the wear-resisting properties of titanium alloy surface, reactive electric spark deposition was carried out using a graphite electrode in a nitrogen gas atmosphere, and TiCN/Ti based composite coating was fabricated on TC4 titanium alloy surface. The surface morphology, microstructure, interfacial behavior between the coatings and substrate, phase and element composition of the coatings were investigated by scanning electron microscope(SEM), X-ray diffraction (XRD) and Auger electron spectroscopy (AES). The microhardness hardness distributions as a function of depth were measured by a micro-hardness tester. The results show that the coating about 20μm thick is continuous, close, and completely covering the substrate surface and mainly composed of the TiCN phase which is in-situ synthesized by the reaction among titanium from the substrate, carbon from the graphite electrode and nitrogen from the shielding nitrogen gas. The coating has a strong metallurgical bonding and adhesion to the substrate. Microhardness profile falls off with the coatings thickness increasing and the highest microhardness values of the superficial coating could be up to 1496HV, which is six times more than that of the substrate.


2011 ◽  
Vol 48-49 ◽  
pp. 1177-1181
Author(s):  
Feng Hua Li ◽  
Xiao Hong Yi ◽  
Jing Lei Zhang ◽  
Zhan Guo Fan

Solid powder boriding experiment was carried out on TC4 titanium alloy surface with method of RE(rare earth)-boriding at the temperature of over 1000°C. By means of XRD, SEM and EDS, phase composition, microstructure and morphology of TC4 titanium alloy after RE-boriding were investigated. The effect of rare earth on phase composition was discussed. Results of the experiment showed that the diffusion layer was composed of top-layer TiB2 and sub-layer TiB whiskers with the highest thickness being 25μm. The XRD results revealed TiB-TiB2 biphasic B-Ti compounds layer formed on the surface of TC4 after RE-boriding. The high content of B and Ce in the surface layer showed rare earth increased the absorption and concentration of B atoms.


Sign in / Sign up

Export Citation Format

Share Document