temperature oxidation
Recently Published Documents





2022 ◽  
Vol 238 ◽  
pp. 111924
Vladimir A. Alekseev ◽  
Nikita Bystrov ◽  
Alexander Emelianov ◽  
Alexander Eremin ◽  
Pavel Yatsenko ◽  

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123168
Geyuan Yin ◽  
Xin Lv ◽  
Erjiang Hu ◽  
Bo Xiao ◽  
Huixian Shen ◽  

2022 ◽  
Vol 30 ◽  
pp. 101759
Que Huang ◽  
Shuo Yu ◽  
Yanjun Chen ◽  
Song Lu ◽  
Zhumao Lu ◽  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 616
Mária Hagarová ◽  
Gabriela Baranová ◽  
Martin Fujda ◽  
Miloš Matvija ◽  
Peter Horňak ◽  

This study describes the water vapour effect on the oxidation resistance of 9Cr creep resistant steels. Boiler P91 and MarBN steels were oxidized for 3000 h in a simulated humid atmosphere with ~10% water vapour. The oxidation kinetics had a stable course for 1000 h and was evaluated by the weight gain curves for both experimental steels and both oxidation temperatures. The oxidation rate was higher at 650 °C versus 600 °C, as reflected by the oxidation rate coefficient. A significant increase occurred after 1000 h of oxidation, which was related to the local breakdown oxide scale and oxide nodules were formed on steel. This oxidation behavior was influenced by the fact that a compact spinel structure of iron oxides and alloying elements were not formed on the steel. Analysis after 3000 h of exposure showed hematite Fe2O3 formed on the outer layer, magnetite Fe3O4 on the middle layer, and the bottom layer consisted of iron-chromium-spinel (Fe,Cr)2O3.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 557
Pengjia Guo ◽  
Shengqiang Ma ◽  
Ming Jiao ◽  
Ping Lv ◽  
Jiandong Xing ◽  

In order to investigate the effect of Cr content on the microstructures and oxidation wear properties of high-boron high-speed steel (HBHSS), so as to explore oxidation wear resistant materials (e.g., hot rollers), a scanning electron microscope, an X-ray diffractometer, an electron probe X-ray microanalysis and an oxidation wear test at elevated temperatures were employed to investigate worn surfaces and worn layers. The results showed that the addition of Cr resulted in the transformation of martensite into ferrite and pearlite, while the size of the grid morphology of borides in HBHSSs was refined. After oxidation wear, oxide scales were formed and the high-temperature oxidation wear resistance of HBHSSs was gradually improved with increased additions of Cr. Meanwhile, an interaction between temperature and load in HBHSSs during oxidation wear occurred, and the temperature had more influence on the oxidation wear properties of HBHSSs. SEM observations indicated that a uniform and compact oxide film of HBHSSs in the worn surface at elevated temperatures was generated on the worn surface, and the addition of Cr also reduced the thickness of oxides and inhibited the spallation of worn layers, which was attributed to improvements in microhardness and oxidation resistance of the matrix in HBHSSs. A synergistic effect of temperature and load in HBHSSs with various Cr additions may dominate the oxidation wear process and the formation and spallation of oxide films.

Sign in / Sign up

Export Citation Format

Share Document