alloy surface
Recently Published Documents


TOTAL DOCUMENTS

888
(FIVE YEARS 252)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Changbang Deng ◽  
Liang Jiang ◽  
Linmao Qian

Abstract Ti-6Al-4V (TC4) alloy has been widely used for implants, and excellent surface quality is required for satisfactory performance. In this study, chemical mechanical polishing (CMP) was introduced to process TC4 alloy. H2O2 and K+ were used to enhance the CMP efficiency. It is revealed that, at pH 10, the material removal rate (MRR) of TC4 alloy increases with the increasing H2O2. A synergistic action between H2O2 and K+ exists under alkaline conditions. With H2O2 and at pH 10, as the K+ concentration increases, the MRR of TC4 alloy first increases and then levels off. The anions have little influence on the CMP performance. After polishing, the surface is smooth without scratches, and the substrate underneath the surface film has no processing damage. For the synergistic action, K+ ions are adsorbed on the Stern layer of the TC4 alloy surface and the silica particles, screening the surface negative charge. Firstly, OOH- produced from H2O2 and OH- can approach the TC4 alloy surface easily, promoting the corrosion. Secondly, more silica particles come into contact with the TC4 alloy surface, enhancing the interactions. Therefore, the MRR increases. The research work brings about a promising high-efficiency CMP process for titanium alloys.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Liang Hu ◽  
Bo Gao ◽  
Ning Xu ◽  
Yue Sun ◽  
Ying Zhang ◽  
...  

The effect of Ce and Mg on surface microcracks of Al–20Si alloys induced via high-current pulsed electron beam (HCPEB) was studied. Mg was revealed to refine the primary Si phase in the pristine microstructure by forming a Mg2Si phase, leading to the suppression of microcrack propagation within the brittle phase after HCPEB irradiation. The incorporation of Ce into the Al–Si–Mg alloys further refined the primary Si phase and reduced the local stress concentration in the brittle phase induced by HCPEB irradiation. Ultimately, the surface microcracks were observed to be eliminated by the synergistic effects between the two elements. For Al–20Si–5Mg–0.7Ce alloys, Ce demonstrated a homogeneous distribution in the Al matrix on the HCPEB-irradiated alloy surface, while the Mg and Si exhibited a certain degree of aggregation in the Mg2Si phase. Metastable structures were formed on the HCPEB-irradiated alloy surface, including the nano-primary silicon phase, nano-cellular aluminium structure, and nano-Mg2Si phase. Compared with alloy specimens containing Mg, the Al–20Si–5Mg–0.7Ce alloy specimens exhibited an excellent anticorrosion property after HCPEB irradiation mainly due to the combined effects of the grain refinement and microcrack elimination.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Orit Avior ◽  
Noa Ben Ghedalia-Peled ◽  
Tomer Ron ◽  
Jeremy Goldman ◽  
Razi Vago ◽  
...  

Due to the excellent biocompatibility of Zn and Zn-based alloys, researchers have shown great interest in developing biodegradable implants based on zinc. Furthermore, zinc is an essential component of many enzymes and proteins. The human body requires ~15 mg of Zn per day, and there is minimal concern for systemic toxicity from a small zinc-based cardiovascular implant, such as an arterial stent. However, biodegradable Zn-based implants have been shown to provoke local fibrous encapsulation reactions that may isolate the implant from its surrounding environment and interfere with implant function. The development of biodegradable implants made from Zn-Fe-Ca alloy was designed to overcome the problem of fibrous encapsulation. In a previous study made by the authors, the Zn-Fe-Ca system demonstrated a suitable corrosion rate that was higher than that of pure Zn and Zn-Fe alloy. The Zn-Fe-Ca system also showed adequate mechanical properties and a unique microstructure that contained a secondary Ca-reach phase. This has raised the promise that the tested alloy could serve as a biodegradable implant metal. The present study was conducted to further evaluate this promising Zn alloy. Here, we assessed the material’s corrosion performance in terms of cyclic potentiodynamic polarization analysis and stress corrosion behavior in terms of slow strain rate testing (SSRT). We also assessed the ability of cells to survive on the alloy surface by direct cell culture test. The results indicate that the alloy develops pitting corrosion, but not stress corrosion under phosphate-buffered saline (PBS) and air environment. The direct cell viability test demonstrates the successful adherence and growth of cells on the alloy surface.


2022 ◽  
Vol 13 ◽  
pp. 100176
Author(s):  
Richard Bright ◽  
Daniel Fernandes ◽  
Jonathan Wood ◽  
Dennis Palms ◽  
Anouck Burzava ◽  
...  

2022 ◽  
Vol 2152 (1) ◽  
pp. 012025
Author(s):  
Haichuan Zhang ◽  
Xuemei Pu ◽  
Hua Yang ◽  
Yifan Jiang ◽  
Xiao Wang

Abstract Magnesium, as one of the lightest metal structural materials, also has its advantages such as high specific strength, good electromagnetic shielding characteristics, good processability and easy recycling, so it has a wide application prospect. However, its poor insulation, corrosion resistance, wear resistance and other properties limited it to be an alloy that can be used in a large area. Therefore, how to improve the corrosion resistance and wear resistance of magnesium alloy is the key to promote the development of magnesium alloy field. This paper reviews the research progress of using magnetron sputtering technology to prepare ceramic composite film on the surface of magnesium alloy and briefly introduces the film corrosion resistance and wear resistance of the thin films. It analyzes the impact of metal transition layer, process parameters and other factors on structure and properties of metal / ceramic coatings and prospects for the development prospects of magnetron sputtering in the field of magnesium alloy surface protection.


ACS Catalysis ◽  
2021 ◽  
pp. 219-225
Author(s):  
Jongkeun Jung ◽  
Sungwoo Kang ◽  
Laurent Nicolaï ◽  
Jisook Hong ◽  
Ján Minár ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1465
Author(s):  
Tinglu Song ◽  
Meishuai Zou ◽  
Defeng Lu ◽  
Hanyuan Chen ◽  
Benpeng Wang ◽  
...  

In recent years, time of flight-secondary ion mass spectrometer (ToF-SIMS) has been widely employed to acquire surface information of materials. Here, we investigated the alloy surface by combining the mass spectra and 2D mapping images of ToF-SIMS. We found by surprise that these two results seem to be inconsistent with each other. Therefore, other surface characteristic tools such as SEM-EDS were further used to provide additional supports. The results indicated that such differences may originate from the variance of secondary ion yields, which might be affected by crystal orientation.


Sign in / Sign up

Export Citation Format

Share Document