Fuzzy logic based smoothing control of wind/PV generation output fluctuations with battery energy storage system

Author(s):  
Xiangjun Li ◽  
Nan Li ◽  
Xuecui Jia ◽  
Dong Hui
Author(s):  
Zaid H. Ali ◽  
Ziyaad H. Saleh ◽  
Raid W. Daoud ◽  
Ahmed H. Ahmed

<p><span>This paper proposes a methodology for designing and operating a microgrid (MG) for the main campus of the Technical Institution Hawija. In this MG, a battery energy storage system (BESS), photovoltaic (PV) generation system, and controllable loads are included. Due to the high penetration of the PVs, over-voltage issues may occur in this MG. A novel operation strategy is considered by coordinating the BESS, PVs, and loads to prevent power outages and accomplish a secure operation of this MG. In this proposed approach, droop controllers have been implemented to provide the appropriate references for the PVs and BESS to maintain the voltage of the MG within a secure range. The generation of the PVs may be curtailed to guarantee the fidelity of the voltage. The intended simulations will be based on MATLAB/Simulink to show the efficacy of the intended design.</span></p><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML&amp;delayStartupUntil=configured"></script><script id="texAllTheThingsPageScript" type="text/javascript" src="chrome-extension://cbimabofgmfdkicghcadidpemeenbffn/js/pageScript.js"></script>


2018 ◽  
Vol 10 (5) ◽  
pp. 1645 ◽  
Author(s):  
Naowarat Tephiruk ◽  
Weerawoot Kanokbannakorn ◽  
Thongchart Kerdphol ◽  
Yasunori Mitani ◽  
Komsan Hongesombut

2019 ◽  
Vol 7 (1) ◽  
pp. 243-260
Author(s):  
Eka Prasetyono ◽  
Epyk Sunarno ◽  
Muchamad Chaninul Fuad ◽  
Dimas Okky Anggriawan ◽  
Novie Ayub Windarko

Renewable energy sources require an energy storage system because its are fluctuating and electricity producing at certain times, even sometimes not in accordance with the needs of the load. To maintain continuity of electricity, smart battery energy storage system is needed. Therefore, this paper of a full-bridge bidirectional DC-DC Converter (FB-BDC) with Fuzzy Logic Control (FLC) is designed and implemented for battery energy storage application. The FLC has error and delta error of voltage level as input and duty cycle of FB-BDC as output. The FB-BDC is controlled by a microcontroller ARM Cortex-M4F STM32F407VG for voltage mode control. The FB-BDC topology is selected becuase battery storage system needed isolated and need high voltage ratio both for step-up and step-down. The main purpose of FB-BDC to perform bidirectional energy transfer both of DC-Bus and battery. Moreover, FB-BDC controls the DC-Bus voltage according to referenced value. The power flow and voltage on DC-Bus is controlled by FLC with voltage mode control. The experiment result shows the ability of FLC  voltage mode control to control FB-BDC on regulate charging voltage with an error 1% and sharing voltage 1.5% form referenced value.


2020 ◽  
Vol 182 ◽  
pp. 03003
Author(s):  
Jiaming Li ◽  
Ying Qiao ◽  
Guojing Liu ◽  
Zongxiang Lu

Battery energy storage system (BESS) is one of the important solutions to improve the accommodation of large-scale grid connected photovoltaic (PV) generation and increase its operation economy. However, the strong intra-day volatility and severe curtailment of PV power sets a high demand of BESS charge-rate that is a key factor in operation models but ignored in current planning researches. This paper proposes a BESS capacity configuration model for PV generation systems which takes BESS’s ability to (dis)charge exceeds its rated power into account. The best charge-rate and power & energy capacity of BESS are optimized by particle swarm optimization (PSO) algorithm. Through an analysis of the annual output statistics of PV power station in the northwest of China, the results show that when considering the high charge-rate of BESS, the optimal BESS capacity configuration rises and comprehensive income of the PV-BESS system will increase.


Sign in / Sign up

Export Citation Format

Share Document