Battery Energy Storage System Control for Voltage Regulation in Microgrid with High Penetration of PV Generation

Author(s):  
Chaowanan Jamroen ◽  
Akekachai Pannawan ◽  
Siriroj Sirisukprasert
Author(s):  
Zaid H. Ali ◽  
Ziyaad H. Saleh ◽  
Raid W. Daoud ◽  
Ahmed H. Ahmed

<p><span>This paper proposes a methodology for designing and operating a microgrid (MG) for the main campus of the Technical Institution Hawija. In this MG, a battery energy storage system (BESS), photovoltaic (PV) generation system, and controllable loads are included. Due to the high penetration of the PVs, over-voltage issues may occur in this MG. A novel operation strategy is considered by coordinating the BESS, PVs, and loads to prevent power outages and accomplish a secure operation of this MG. In this proposed approach, droop controllers have been implemented to provide the appropriate references for the PVs and BESS to maintain the voltage of the MG within a secure range. The generation of the PVs may be curtailed to guarantee the fidelity of the voltage. The intended simulations will be based on MATLAB/Simulink to show the efficacy of the intended design.</span></p><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML&amp;delayStartupUntil=configured"></script><script id="texAllTheThingsPageScript" type="text/javascript" src="chrome-extension://cbimabofgmfdkicghcadidpemeenbffn/js/pageScript.js"></script>


2020 ◽  
Vol 13 (1) ◽  
pp. 96-107
Author(s):  
Bernard Adjei ◽  
Elvis K. Donkoh ◽  
Dominic Otoo ◽  
Emmanuel De-Graft Johnson Owusu-Ansah ◽  
Francois Mahama

In microgrid operation, one of the most vital tasks of the system control is to wiselydecide between selling excess power to the local grid or charge the Battery Energy Storage System (BESS). Our study uses Mixed-Integer Linear Programming to investigate the impact of storage system on the operational cost of a microgrid. The results suggested that the presence of BESS would relieve the pressure on the utility grid but not the cost of electricity due to the expensive nature of the storage plant. In view of this, it will be more beneficial to sell excess renewable generated power to the utility grid than to invest in a storage system for larger microgrids.


2021 ◽  
Vol 83 (6) ◽  
pp. 203-209
Author(s):  
Nur Muhammad Alif Ramli ◽  
Siti Maherah Hussin ◽  
Dalila Mat Said ◽  
Norzanah Rosmin ◽  
Amirjan Nawabjan

In recent years, the increasing integration of PV generations into distribution network systems is becoming a huge concern as it introduces various complications such as voltage rise problems, especially during high PV penetration levels. Conventional mitigation methods using voltage regulating devices are not designed to mitigate this particular problem while emerging methods requires sacrifices in term of cost and profit to be made by PV system owners. Thus, mitigation using a battery energy storage system (BESS) is proposed in this paper, where it is specifically designed to solve the voltage rise problem in the distribution system during high PV penetration. This is achieved by controlling the charging and discharging of the BESS accordingly. To validate the effectiveness of the proposed BESS, a simulation using MATLAB/Simulink software of 25 distributed PV generations with respective loads connected to a distribution network power system is done. The penetration level is set from 0% to 100% and the voltage level is measured at the point of common coupling for each increment. The findings show that the BESS can regulate the voltage rise that occurred during high PV penetration of 80% and 100% from 1.11 p.u. and 1.13 p.u. to an acceptable voltage of 1.01 pu.


Sign in / Sign up

Export Citation Format

Share Document