Optimization Model for Coupled Wind and Thermal Power Transmission of Large-Scale Wind Power Transmission Grid

Author(s):  
Wang Feng ◽  
Chen Huifen ◽  
Wang Yue ◽  
Xu Yizheng
2013 ◽  
Vol 772 ◽  
pp. 705-710
Author(s):  
Li Wei Ju ◽  
Zhong Fu Tan ◽  
He Yin ◽  
Zhi Hong Chen

In order to be able to absorb the abandoned wind, increasing wind-connect amount, the paper study the way of wind power, thermal power joint run and puts forward wind power, thermal power joint run optimization model based on the energy-saving generation dispatching way under the environment of TOU price and the target of minimizing the cost of coal-fired cost, unit commitment and pollution emissions. The numerical example finds, the TOU price can realize the goal of peak load shifting, increasing the electricity demand in the low load and reducing electricity demand in the peak load. The model can increase the amount of wind-connect grid, absorb the abandoned wind, reduce the use of coal-fired units under the environment, increase the average electricity sales price and profit of Power Company. Therefore, the model has significant economical environmental benefits


2013 ◽  
Vol 385-386 ◽  
pp. 1117-1121
Author(s):  
Lin Chuan Li ◽  
Kun Wang

Large-scale wind power connected to the power system is a challenge to the traditional dispatch mode which is based on the accuracy of load forecasting and the accessibility of power, how to deal with the randomness and volatility of wind power has become a new problem facing the dispatch of power system. In this paper, an optimal power flow model with the goal of minimizing the total generation cost is established under the environment of generation market. Consider a variety of power supply in the system, the hydro and wind power should be preferentially used; Thermal power units bid for the capacity which is determined when wind power reach its maximum output at the minimum equivalent load time, and then whether the booting units can satisfy the load is checked at the maximum equivalent load time, if not, wind power will be curtailed to boot new thermal units until the load is met. Finally the example shows the feasibility of the dispatching strategies.


2013 ◽  
Vol 724-725 ◽  
pp. 463-468
Author(s):  
Jian Bo Wang ◽  
Wen Ying Liu ◽  
Wei Zheng ◽  
Chen Liang

Due to the fluctuations and intermittency of wind power, large-scale wind farms integration will cause adverse impact on the safety and stability of the system,such as harmonic pollution, bad power quality, system stability destruction.On the basis of multiple constraints, including hydropower’s and thermal power’s operating characteristics, determination of reserve capacity considering wind power forecasting bias, climbing speed constraints, and maximum output constraints, this paper proposed a control strategy of joint coordination of wind, hydropower and thermal power, which suppressed the fluctuations of wind power effectively. At last, the article give a simulation to verify the feasibility of the control strategy to stabilize system frequency.


Sign in / Sign up

Export Citation Format

Share Document