peak load
Recently Published Documents


TOTAL DOCUMENTS

2108
(FIVE YEARS 760)

H-INDEX

51
(FIVE YEARS 12)

2022 ◽  
pp. 204141962110654
Author(s):  
Tan-Trung Bui ◽  
Dhafar Al Galib ◽  
Abdelkrim Bennani ◽  
Ali Limam

The collapse of tubes under axial load is an important subject from the safety point of view, particularly in the design of energy absorbing devices used in many engineering applications. In this study, quasi-static and dynamic experiments were carried out on square thin-walled aluminum extrusions to investigate the effects of circular holes. Cutouts were introduced in the four corners of the square-section tube, not far from the end boundary of the tube, in order both to decrease the first peak load on the load-displacement characteristic and to control the collapse mode. Different aspects, such as the buckling modes and the energy absorption in quasi-static axial crushing tests, as well as dynamic effects and material rheology contributions in dynamic crushing tests, have been examined. For the dynamic tests, the parameters were the impacting mass and its velocity. The results showed a drop in the first peak function of the openings’ radius and the tube’s energy absorption capacity was kept. A comparison between static and dynamic tests results was carried out and the interpretation of the results in terms of deformation mechanism and energy absorption was discussed. Numerical simulations with the finite element code ABAQUS were conducted to confirm the experimental findings. The results of different numerical models, implicit and explicit calculations, that contribute to a basic understanding of the buckling and prediction of the crash behavior of the aluminum components without and with the cutouts are presented.


Author(s):  
zixuan zhou ◽  
Xiuchang Huang ◽  
Jiajin Tian ◽  
Hongxing Hua ◽  
Ming Tang ◽  
...  

Abstract Reducing the rotor dynamic load is an important issue to improve the performance and reliability of a helicopter. The control mechanism of the actively controlled flap on the rotor dynamic load is numerically and experimentally investigated by a 3-blade helicopter rotor in this paper. In the aero-elastic numerical approach, the complex motion of the rotor such as the stretching, bending, torsion and pitching of the blade including the deflection of the actively controlled flap (ACF) are all taken into consideration in the structural formulation. The aerodynamic solution adopted the vortex lattice method combining with the free wake model, in which the influence of ACF on the free wake and the aerodynamic load on the blade is taken into account as well. While the experimental method of measuring hub loads and acoustic was accomplished by a rotor rig in a wind tunnel. The result shows that the 3/rev ACF actuation can reduce the $3\omega$ hub load by more than 50\% at maximum, which is significantly better than the 4/rev control. While 4/rev has greater potential to reduce BVI loads than 3/rev with $\mu=0.15$. Further mechanistic analysis shows that by changing the phase difference between the dynamic load on the flap and the rest of the blade, the peak load on the whole blade can be improved, thus achieving effective control of the hub dynamic load, the flap reaches the minimum angle of attack at 90°-100° azimuth under best control condition; when the BVI load is perfectly controlled, the flap reaches the minimum angle of attack at 140° azimuth, and by changing the circulation of the wake, the intensity of blade vortex interaction in the advancing side is improved. Moreover, an interesting finding in the optimal control of noise and vibration is that an overlap point exist on the motion patterns of the flap with different frequencies.


2022 ◽  
Author(s):  
Chidambaranathan Bibin ◽  
Ponnusamy Kumarasami Devan ◽  
Soundararajan Gopinath ◽  
Thulasiram Ramachandran

Abstract The increasing demand for energy consumption because of the growing population and environmental concerns has motivated the researchers to ponder about alternative fuel that could replace diesel fuel. A new fuel should be cheaply available, clean, efficient, and environmentally friendly. In this paper, the engine operated with neat punnai oil blends with diesel were investigated at various engine load conditions, keeping neat punnai oil and diesel as base fuels. The performance indicators such as Brake Specific Energy consumption (BSEC), Brake thermal efficiency (BTE) and Exhaust gas temperature (EGT); emission indicators such as Carbon monoxide (CO), Oxides of Nitrogen (NOx), smoke opacity; and combustion parameters like cylinder pressure and heat release rate were examined. The Brake thermal efficiency of diesel is 29.2% whereas, it was lower for neat punnai oil and its blends at peak load conditions. Concerning the environmental aspect, Oxides of Nitrogen emission showed a decreasing trend with higher smoke emissions for Punnai oil blends. Detailed combustion analysis showed that on smaller concentrations of punnai oil in the fuel blend, the duration of combustion has improved significantly. However, for efficiency and emissions, the P20 (20% Punnai oil and 80% Diesel) blend performs similar to that of diesel compared to all other blending combinations. When compared with diesel, the P20 blend shows an improvement in BSEC by 26.37%. It also performs closer in HC emission, a marginal increase in smoke opacity of 4% with reduced NOx and CO2 emission of 7.9% and 4.65% respectively. Power loss was noticed when neat punnai oil and higher blends were used due to the high density and low calorific value of punnai oil blends which leads to injecting more fuel for the same pump stroke.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jianfeng Wang ◽  
Yuke Liu ◽  
Chao Yang ◽  
Wenmin Jiang ◽  
Yun Li ◽  
...  

The viscoelastic behavior of minerals in shales is important in predicting the macroscale creep behavior of heterogeneous bulk shale. In this study, in situ indentation measurements of two major constitutive minerals (i.e., quartz and clay) in Longmaxi Formation shale from the Sichuan Basin, South China, were conducted using a nanoindentation technique and high-resolution optical microscope. Firstly, quartz and clay minerals were identified under an optical microscope based on their morphology, surface features, reflection characteristics, particle shapes, and indentation responses. Three viscoelastic models (i.e., three-element Voigt, Burger’s, and two-dashpot Kelvin models) were then used to fit the creep data for both minerals. Finally, the effects of peak load on the viscoelastic behavior of quartz and clay minerals were investigated. Our results show that the sizes of the residual imprints on clay minerals were larger than that of quartz for a specific peak load. Moreover, the initial creep rates and depths in clay minerals were higher than those in quartz. However, the creep rates of quartz and clay minerals displayed similar trends, which were independent of peak load. In addition, all three viscoelastic models produced good fits to the experimental data. However, due to the poor fit in the initial holding stage of the three-element Voigt model and instability of the two-dashpot Kelvin model, Burger’s model is best in obtaining the regression parameters. The regression results indicate that the viscoelastic parameters obtained by these models are associated with peak load, and that a relatively small peak load is more reliable for the determination of viscoelastic parameters. Furthermore, the regression values for the viscoelastic parameters of clay minerals were lower than those of quartz and the bulk shale, suggesting the former facilitates the viscoelastic deformation of shale. Our study provides a better understanding of the nanoscale viscoelastic properties of shale, which can be used to predict the time-dependent deformation of shale.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 177
Author(s):  
Yu Huang ◽  
Xiaoyan Jin ◽  
Junji Ji

Debris flows often cause local damage to engineering structures by exerting destructive impact forces. The debris-flow–deformable-barrier interaction is a significant issue in engineering design. In this study, a large physical flume model test device was independently designed to repeatedly reproduce the flow and impact process of debris flow. Three physical flume tests were performed to investigate the effect of barrier stiffness on the debris flow impact. The flow kinematics of debris flow with three barrier stiffness values are essentially consistent with the process of impact–run-up–falling–pile-up. The development of a dead zone provided a cushion to diminish the impact of the follow-up debris flow on the barrier. The peak impact forces were attenuated as the barrier stiffness decreased. The slight deflections of a deformable barrier were sufficiently effective for peak load attenuation by up to 30%. It showed that the decrease of the barrier stiffness had a buffer effect on the debris flow impact and attenuated the peak impact force. And with the decrease of the barrier stiffness, when the barrier was impacted by the same soil types, the recoverable elastic strain will be larger, and the strain peak will be more obvious.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Toni Wendler ◽  
Melanie Edel ◽  
Robert Möbius ◽  
Johannes Fakler ◽  
Georg Osterhoff ◽  
...  

Abstract Background Intraoperative proximal femoral fractures (IPFF) are relevant complications during total hip arthroplasty. Fixation using cerclage wires (CW) represents a minimally-invasive technique to address these fractures through the same surgical approach. The goal of treatment is to mobilise the patient as early as possible, which requires high primary stability. This study aimed to compare different cerclage wire configurations fixing IPFF with regard to biomechanical primary stability. Methods Standardised IPFF (type II, Modified Mallory Classification) were created in human fresh frozen femora and were fixed either by two or three CW (1.6 mm, stainless steel). All cadaveric specimens (n = 42) were randomised to different groups (quasi-static, dynamic) or subgroups (2 CW, 3 CW) stratified by bone mineral density determined by Dual Energy X-ray Absorptiometry. Using a biomechanical testing setup, quasi-static and dynamic cyclic failure tests were carried out. Cyclic loading started from 200 N to 500 N at 1 Hz with increasing peak load by 250 N every 100 cycles until failure occurred or maximum load (5250 N) reached. The change of fracture gap size was optically captured. Results No significant differences in failure load after quasi-static (p = 0.701) or dynamic cyclic loading (p = 0.132) were found between the experimental groups. In the quasi-static load testing, all constructs resisted 250% of the body weight (BW) of their corresponding body donor. In the dynamic cyclic load testing, all but one construct (treated by 3 CW) resisted 250% BW. Conclusions Based on this in vitro data, both two and three CW provided sufficient primary stability according to the predefined minimum failure load (250% BW) to resist. The authors recommend the treatment using two CW because it reduces the risk of vascular injury and shortens procedure time.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 404
Author(s):  
Sujing Zhao ◽  
Yiheng Bo

The mechanical performance of ultra-high performance concrete (UHPC) is a function of fiber distribution and orientation, which are affected by the processing of the fresh material. In this study, the influences of two casting positions (mid-cast and end-cast) on strength and fracture properties of UHPCs with different fiber types and fiber contents were investigated. The results show that mid-cast specimens have higher flexural strength and fracture properties than end-cast specimens, while the compressive strength is almost unaffected by casting position. Compared to specimens with straight fibers, the flexural strength of specimens with hooked-end fibers is more likely to be affected by casting position. The residual load-to-peak load ratio is independent of casting position but affected by fiber type and fiber content.


2022 ◽  
Vol 1048 ◽  
pp. 387-395
Author(s):  
Joel Joseph Shelton ◽  
Mohammad Izazs ◽  
C. Daniel ◽  
A. Arun Solomon

Nowadays, one of the fastest growing technique is an Insulated Concrete Form (ICF). It has advantages like cost-effective, less maintenance, soundproof, energy-efficient, waterproof and disaster-resistant. ICF wall panels are made by interlocking Fibre Cement Board (FCB) sheet which poured in placed concrete. In this study, the behaviour of the ICF wall panel under axial compression is examined with experimental and analytical methods. ICF wall panels cast with various thickness and dense FCB are tested under axial compression. ICF panels with 1.2gm3/cm dense FCB with changing width of 6mm and 10mm were casted for experimental analysis. The experiments were carried out in an universal testing machine with the capacity of 600 kN. The maximum peak load of 540 kN is observed in FCB of 10mm thick and the maximum displacement of 13mm is observed in FCB80 at the peak load. An analytical investigation is carried with Euler’s crippling load equation and an average variation of 12% is observed between analytical and experimental results. It is concluded that the ICF system of construction provides desirable plastic behaviour against axial compressive loading. Hence ICF is recommended for construction to get the maximum benefits of the wall while it reaches ultimate strain.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 330
Author(s):  
Md Masud Rana ◽  
Akhlaqur Rahman ◽  
Moslem Uddin ◽  
Md Rasel Sarkar ◽  
Sk. A. Shezan ◽  
...  

Peak load reduction is one of the most essential obligations and cost-effective tasks for electrical energy consumers. An isolated microgrid (IMG) system is an independent limited capacity power system where the peak shaving application can perform a vital role in the economic operation. This paper presents a comparative analysis of a categorical variable decision tree algorithm (CVDTA) with the most common peak shaving technique, namely, the general capacity addition technique, to evaluate the peak shaving performance for an IMG system. The CVDTA algorithm deals with the hybrid photovoltaic (PV)—battery energy storage system (BESS) to provide the peak shaving service where the capacity addition technique uses a peaking generator to minimize the peak demand. An actual IMG system model is developed in MATLAB/Simulink software to analyze the peak shaving performance. The model consists of four major components such as, PV, BESS, variable load, and gas turbine generator (GTG) dispatch models for the proposed algorithm, where the BESS and PV models are not applicable for the capacity addition technique. Actual variable load data and PV generation data are considered to conduct the simulation case studies which are collected from a real IMG system. The simulation result exhibits the effectiveness of the CVDTA algorithm which can minimize the peak demand better than the capacity addition technique. By ensuring the peak shaving operation and handling the economic generation dispatch, the CVDTA algorithm can ensure more energy savings, fewer system losses, less operation and maintenance (O&M) cost, etc., where the general capacity addition technique is limited.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 296
Author(s):  
Mohammad Masih Sediqi ◽  
Akito Nakadomari ◽  
Alexey Mikhaylov ◽  
Narayanan Krishnan ◽  
Mohammed Elsayed Lotfy ◽  
...  

Like most developing countries, Afghanistan still employs the traditional philosophy of supplying all its load demands whenever they happen. However, to have a reliable and cost-effective system, the new approach proposes to keep the variations of demand at the lowest possible level. The power system infrastructure requires massive capital investment; demand response (DR) is one of the economic options for running the system according to the new scheme. DR has become the intention of many researchers in developed countries. However, very limited works have investigated the employment of appropriate DR programs for developing nations, particularly considering renewable energy sources (RESs). In this paper, as two-stage programming, the effect of the time-of-use demand response (TOU-DR) program on optimal operation of Afghanistan real power system in the presence of RESs and pumped hydropower storage (PHS) system in the day-ahead power market is analyzed. Using the concept of price elasticity, first, an economic model indicating the behaviour of customers involved in TOU-DR program is developed. A genetic algorithm (GA) coded in MATLAB software is used accordingly to schedule energy and reserve so that the total operation cost of the system is minimized. Two simulation cases are considered to verify the effectiveness of the suggested scheme. The first stage programming approach leads case 2 with TOU-DR program to 35 MW (811 MW − 776 MW), $16,235 ($528,825 − $512,590), and 64 MW reductions in the peak load, customer bill and peak to valley distance, respectively compared to case 1 without TOU-DR program. Also, the simulation results for stage 2 show that by employing the TOU-DR program, the system’s total cost can be reduced from $317,880 to $302,750, which indicates a significant reduction in thermal units’ operation cost, import power tariffs and reserve cost.


Sign in / Sign up

Export Citation Format

Share Document