environmental benefits
Recently Published Documents





Marino Godoy Arcia ◽  
Zaid Garcia Sanchez ◽  
Hernan Hernandez Herrera ◽  
José Antonio Gonzalez Cueto Cruz ◽  
Jorge Iván Silva Ortega ◽  

The renewable energy sources (RESs) projects are solutions with environmental benefits that are changing the traditional power system operation and concept. Transient stability analysis has opened new research trends to guarantee a secure operation high penetration. Problems such as frequency fluctuations, decoupling between generator angular speed, network frequency fluctuation and kinetic energy storing absence are the main non-conventional RESs penetration in power systems. This paper analyzes short-circuit influence on frequency response, focusing on weak distribution networks and isolated, to demonstrate relevance in frequency stability. A study case considered a generation outage and a load input to analyze frequency response. The paper compares frequency response during a generation outage with a short-circuit occurrence. In addition, modular value and angle generator terminal voltage affectation by electric arc and network ratio R⁄X, failure type influence in power delivered behavior, considering fault location, arc resistance and load. The arc resistance is defined as an added resistance that appears during failure and influences voltage modulus and angle value results showing that intermittent non-conventional RES participation can lead to frequency fluctuations. Results showed that arc resistance, type of failure, location and loadability determine the influence of frequency response factors in weak power systems.

2022 ◽  
Vol 178 ◽  
pp. 106083
Junnian Song ◽  
Runchuan Feng ◽  
Chunlin Yue ◽  
Yixuan Shao ◽  
Jiatong Han ◽  

2022 ◽  
Vol 11 (1) ◽  
pp. 1-13
Md. Tawhidul Islam ◽  
Md. Elias Hossain

Bangladesh is the most densely populated country in the world. With a total population of around 165 million, the country has constantly been facing food security challenges and other problems. Therefore, increasing food production is one of the feasible solutions to this challenge, and proper agricultural land use for food production bears critical importance. Adopting sustainable irrigation systems and viable technologies would be vital for ensuring efficient use of agricultural land in Bangladesh to safeguard the country's food security. Solar irrigation pumps (SIPs) can be a reliable option in this regard. However, Bangladesh has experienced a prolonged growth rate of SIP installation in the last decade.  The countryhas set a target to install 10000 SIPs by the year 2027, albeit it is a tiny share of the 1.57 million conventional irrigation pumps operating in the country. This study aims to investigate the economic feasibility of the SIPs operating in the northern region of Bangladesh in terms of estimating financial feasibility and environmental benefits. The study is mainly based on primary data collected from the users of SIPs from two Upazilas of Dinajpur and Rangpur districts. A total of 14 SIPs, categorized into large, medium, and small pumps, are selected randomly from the available SIPs in the study areas. The financial analysis reveals that small SIPs are the most profitable option (20% IRR) for investment. Large SIPs are moderately profitable (10% IRR), and their profitability can be improved (10.50% IRR) by introducing additional uses of solar energy. However, medium SIPs are the worst (5% IRR) option for investment. In the study areas, large and medium SIPs are designed for the 'fees for service model', and small SIPs are designed for the 'fees for ownership model'. It is found that the 'fees for ownership model' is more profitable than the 'fees for service model'. Moreover, the net environmental benefit for all SIPs is found almost equal to the given subsidy for installing them. Also, the net environmental benefit per kilowatt peak (kWp) is highest for the small SIPs. This paper recommends that additional use (e.g., husking, grinding, supply excess electricity to grid, and so on) of solar energy can improve the profitability of investmenton SIPs. Further, the government should continue giving grants for installing SIPs and promote 'fees for ownership model' (small SIPs) for personal use. It would speed up the dissemination rate of SIPs and help increase the country's agricultural production and improve the environmental conditions.

2022 ◽  
Vol 8 ◽  
Hui Yao ◽  
Yiran Wang ◽  
Junfu Liu ◽  
Mei Xu ◽  
Pengrui Ma ◽  

Lignin is the second-largest plant polymer on Earth after cellulose. About 98% of lignin produced in the papermaking and pulping industry is used for combustion heating or power generation. Less than 2% of lignin is used in more valuable fields, mainly in the formulation of dispersants, adhesives, and surfactants. Asphalt is one of the most important materials in pavement engineering. It is a dark brown complex mixture composed of hydrocarbons with different molecular weights and their non-metallic derivatives. Because the chemical structure of lignin is similar to that of asphalt, it is a carbon-based hydrocarbon material. More researchers studied the application of lignin in pavement engineering. In this paper, the structure, application, and extraction technology of lignin were summarized. This is a review article describing the different applications of lignin in pavement engineering and exploring the prospects of the application. There are three main types of pavement materials that can be used for lignin in pavement engineering, which are asphalt, asphalt mixture, and roadbed soil. In asphalt, lignin can be used as a modifier, extender, emulsifier, antioxidant, and coupling agent. In asphalt mixtures, lignin can be used as an additive. In road base soils, lignin can be used as a soil stabilizer. Furthermore, the article analyzed the application effects of lignin from the life cycle assessment. The conclusions suggest that lignin-modified asphalt exhibits more viscosity and hardness, and its high-temperature resistance and rutting resistance can be significantly improved compared with conventional asphalt. In addition, some lignin-modified asphalt binders exhibit reduced low-temperature crack resistance and fatigue resistance, which can be adjusted and selected according to the climate change in different regions. The performance of lignin as an asphalt mixture additive and asphalt extender has been proved to be feasible. Lignin can also produce good mechanical properties as well as environmental benefits as a soil stabilizer. In summary, lignin plays an important role in asphalt pavement and roadbed soil, and it is likely to be a development trend in the future due to its environmental friendliness and low cost. More research is needed to generalize the application of lignin in pavement engineering.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 596
Daniel Wuebben ◽  
Jens F. Peters

Clearly and accurately communicating the economic, environmental, and social benefits of solar PV prosumerism poses significant challenges. Previous research shows that government policies and public engagement campaigns can positively impact solar prosumerism; however, little is known about the quality and accuracy of information exchanged between rooftop solar installers and potential prosumers. This study addresses part of this gap with a mixed methods approach. First, a multimodal discourse analysis of installation proposals from seven home solar installers in Madrid shows accurate and reasonable financial benefits alongside incongruent social and environmental benefits. Second, the calculated efficiency of the seven proposed solar installations is compared with the efficiency of four different PVSC solar arrays using actual load and generation profiles. The results show that (i) the high variability of actual household demand on the minute-by- minute level significantly decreases self-consumption rate and profitability in comparison with the rates estimated using hourly or monthly, and (ii) the grouping of households into solar communities should significantly increase self-consumption and profitability. Therefore, using minute by minute time series in home solar estimations would reveal an added value and social benefit that is commonly overlooked. We conclude with recommendations for future research and multimodal communication campaigns that balance benefits of individual prosumerism and community solar.

2022 ◽  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.

2022 ◽  
Vol 12 (2) ◽  
pp. 697
Sabine Kruschwitz ◽  
Tyler Oesch ◽  
Frank Mielentz ◽  
Dietmar Meinel ◽  
Panagiotis Spyridis

Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development.

2022 ◽  
Vol 5 ◽  
Karen Enciso ◽  
Natalia Triana ◽  
Manuel Díaz ◽  
Stefan Burkart

Feeding improvement strategies are key in increasing cattle productivity and reducing its environmental footprint. Nevertheless, Colombian tropical cattle systems still feature serious deficiencies in both forage quality and availability. As a result of past and on-going forage Research and Development (R&D) processes, institutions have released 23 grass and legume cultivars of superior characteristics in terms of forage quality, supply, or adaptation to different soil and climate conditions, while providing numerous environmental benefits. However, low levels of adoption are observed: although R&D processes are a necessary condition for adoption, they are still not sufficient to guarantee agricultural technification in Colombia. The ultimate success occurs only when end-users make effective use of a technology–a link constantly interrupted. Agricultural innovation requires complex processes of interaction in which knowledge is shared amongst organizations involved in the Agricultural Innovation System (AIS), namely: suitable links, attitudes, practices, governance structures, and policies. The objective of this study is to identify limitations and opportunities in R&D, adoption, and diffusion of forage technologies in Colombia from an AIS perspective. Particularly, we present a study case pertaining to research institutions only, to (a) map the involved actors and describe their roles and links, and (b) identify the events that marked the evolution of the AIS and the course of forage R&D in its research-related components. We applied a qualitative methodology based on focus group discussions, in-depth interviews, literature review, and historical analysis. Results show that the complex nature of institutions and the interactions between them determine the historical transformation of diffusion of forage technologies. The lack of connection between institutions and the weak intensity of the relationships, prevent the convergence of interests and objectives, leading to vicious cycles that hamper technology adoption. Insufficient synchronization between institutions of different nature (and even between those that share similar objectives) results in efficiency losses due to an unnecessary repetition of activities and processes. We provide recommendations for policy- and decision-makers that will help in both a restructuration of the AIS and a better allocation of funds for R&D, and thus support the development of more effective pathways for forage adoption and scaling.

2022 ◽  
Vol 14 (2) ◽  
pp. 758
Rachel Pasternack ◽  
Mark Wishnie ◽  
Caitlin Clarke ◽  
Yangyang Wang ◽  
Ethan Belair ◽  

As the need to address climate change grows more urgent, policymakers, businesses, and others are seeking innovative approaches to remove carbon dioxide emissions from the atmosphere and decarbonize hard-to-abate sectors. Forests can play a role in reducing atmospheric carbon. However, there is disagreement over whether forests are most effective in reducing carbon emissions when left alone versus managed for sustainable harvesting and wood product production. Cross-laminated timber is at the forefront of the mass timber movement, which is enabling designers, engineers, and other stakeholders to build taller wood buildings. Several recent studies have shown that substituting mass timber for steel and concrete in mid-rise buildings can reduce the emissions associated with manufacturing, transporting, and installing building materials by 13%-26.5%. However, the prospect of increased utilization of wood products as a climate solution also raises questions about the impact of increased demand for wood on forest carbon stocks, on forest condition, and on the provision of the many other critical social and environmental benefits that healthy forests can provide. A holistic assessment of the total climate impact of forest product demand across product substitution, carbon storage in materials, current and future forest carbon stock, and forest area and condition is challenging, but it is important to understand the impact of increased mass timber utilization on forests and climate, and therefore also on which safeguards might be necessary to ensure positive outcomes. To thus assess the potential impacts, both positive and negative, of greater mass timber utilization on forests ecosystems and emissions associated with the built environment, The Nature Conservancy (TNC) initiated a global mass timber impact assessment (GMTIA), a five-part, highly collaborative research program focused on understanding the potential benefits and risks of increased demand for mass timber products on forests and identifying appropriate safeguards to ensure positive outcomes.

Sign in / Sign up

Export Citation Format

Share Document