Lightning-Induced Voltage on an Overhead Transmission Line Terminated with Non-veritical Risers

Author(s):  
Jun Guo ◽  
Marcos Rubinstein ◽  
Vernon Cooray ◽  
Farhad Rachidi
Author(s):  
Ali I. El Gayar ◽  
Zulkurnain Abdul-Malek

The purpose of this research is to investigate the severity of voltages induced on gas pipeline installed in parallel to a 115 kV overhead transmission line. The overhead transmission line (OHTL) is configured as a single-circuit. One of the phases exposed to single phase to ground fault. Transmission of high voltage along the same right of way (ROW) with metallic conductor may possibly introduce interference on metallic conductors such as gas pipeline (GPL) due to power frequency voltage as well as due to phase faults and switching phenomena. Two main approaches were used to compute the induced voltages, namely the method of moment (MOM), which is based on electromagnetic field theory, and circuit based method. The simulation considers the length of OHTL and GPL are 30 km and 10km respectively. The pipeline buried at 1 m underground in homogenous earth structure with various soil resistivites ranged from 10 to 1000 Ω-m. The transmission line consists of 150 towers and 200 m span length. The separation distance between the GPL and OHTL is varied from 5 to 100 m. The phase to ground fault current changed from 0.5 to 10 kA. Several observation points are made throughout the corridor, to examinant the induced voltages at different locations. The result show that, the soil resistivity, separation distance, and fault current had significant effect on pipeline induced voltage. In case of the observation points lying on the soil or on the outer surface of the pipeline coating, the induced voltage increased, when the soil resistivity increase, as expected. In case of the observation points placed inside the pipeline metal, and the pipeline is well coated, the induced voltage will decreased, when the soil resistivity increase.


Author(s):  
Ali I Elgayar ◽  
Zulkurnain Abdul-Malek

<span lang="EN-US">The purpose of this paper is to investigate the severity of lightning induced voltages on a gas pipeline installed in parallel with overhead transmission line using two different simulation packages. The results from this study using CDEGS, which solves a given problem based on electromagnetic computations, reveal that the induced voltages on the pipeline are more accurate compared to that obtained by PSCAD simulation, which is based on the circuit approach. Unlike PSCAD, CDEGS considers many salient factors such as soil model, inductive, capacitive and conductive couplings, and multiple soil structures.  Models of a double circuit 132kV transmission line, gas pipelines, soil with different resistivities and variable lightning surges were developed. The effects of pipelines located at various heights above ground and distance of pipeline from the power lines were also studied. Compared to previously published work using PSCAD, it is found that CDEGS has given more accurate results. Several findings which were not possible using PSCAD were observed such as the effect of soil structure on induced voltage and multiple layers soil. This also led to better understanding of the conductive coupling from lightning strikes and fault conditions. The modeling work using CDEGS not only useful for providing more reliable data for further protection and mitigation techniques, but is  also very versatile to study the effects of various other important factors affecting the induced voltage on the pipelines. </span>


Author(s):  
Ali I. El Gayar ◽  
Zulkurnain Abdul-Malek

The purpose of this research is to investigate the severity of voltages induced on gas pipeline installed in parallel to a 115 kV overhead transmission line. The overhead transmission line (OHTL) is configured as a single-circuit. One of the phases exposed to single phase to ground fault. Transmission of high voltage along the same right of way (ROW) with metallic conductor may possibly introduce interference on metallic conductors such as gas pipeline (GPL) due to power frequency voltage as well as due to phase faults and switching phenomena. Two main approaches were used to compute the induced voltages, namely the method of moment (MOM), which is based on electromagnetic field theory, and circuit based method. The simulation considers the length of OHTL and GPL are 30 km and 10km respectively. The pipeline buried at 1 m underground in homogenous earth structure with various soil resistivites ranged from 10 to 1000 Ω-m. The transmission line consists of 150 towers and 200 m span length. The separation distance between the GPL and OHTL is varied from 5 to 100 m. The phase to ground fault current changed from 0.5 to 10 kA. Several observation points are made throughout the corridor, to examinant the induced voltages at different locations. The result show that, the soil resistivity, separation distance, and fault current had significant effect on pipeline induced voltage. In case of the observation points lying on the soil or on the outer surface of the pipeline coating, the induced voltage increased, when the soil resistivity increase, as expected. In case of the observation points placed inside the pipeline metal, and the pipeline is well coated, the induced voltage will decreased, when the soil resistivity increase.


Author(s):  
Ali I Elgayar ◽  
Zulkurnain Abdul-Malek

<span lang="EN-US">The purpose of this paper is to investigate the severity of lightning induced voltages on a gas pipeline installed in parallel with overhead transmission line using two different simulation packages. The results from this study using CDEGS, which solves a given problem based on electromagnetic computations, reveal that the induced voltages on the pipeline are more accurate compared to that obtained by PSCAD simulation, which is based on the circuit approach. Unlike PSCAD, CDEGS considers many salient factors such as soil model, inductive, capacitive and conductive couplings, and multiple soil structures.  Models of a double circuit 132kV transmission line, gas pipelines, soil with different resistivities and variable lightning surges were developed. The effects of pipelines located at various heights above ground and distance of pipeline from the power lines were also studied. Compared to previously published work using PSCAD, it is found that CDEGS has given more accurate results. Several findings which were not possible using PSCAD were observed such as the effect of soil structure on induced voltage and multiple layers soil. This also led to better understanding of the conductive coupling from lightning strikes and fault conditions. The modeling work using CDEGS not only useful for providing more reliable data for further protection and mitigation techniques, but is  also very versatile to study the effects of various other important factors affecting the induced voltage on the pipelines. </span>


Sign in / Sign up

Export Citation Format

Share Document