Spatio-Temporal Multi-scale Soft Quantization Learning for Skeleton-Based Human Action Recognition

Author(s):  
Jianyu Yang ◽  
Chen Zhu ◽  
Junsong Yuan
Author(s):  
M. N. Al-Berry ◽  
Mohammed A.-M. Salem ◽  
H. M. Ebeid ◽  
A. S. Hussein ◽  
Mohamed F. Tolba

Human action recognition is a very active field in computer vision. Many important applications depend on accurate human action recognition, which is based on accurate representation of the actions. These applications include surveillance, athletic performance analysis, driver assistance, robotics, and human-centered computing. This chapter presents a thorough review of the field, concentrating the recent action representation methods that use spatio-temporal information. In addition, the authors propose a stationary wavelet-based representation of natural human actions in realistic videos. The proposed representation utilizes the 3D Stationary Wavelet Transform to encode the directional multi-scale spatio-temporal characteristics of the motion available in a frame sequence. It was tested using the Weizmann, and KTH datasets, and produced good preliminary results while having reasonable computational complexity when compared to existing state–of–the–art methods.


2020 ◽  
Vol 79 (17-18) ◽  
pp. 12349-12371
Author(s):  
Qingshan She ◽  
Gaoyuan Mu ◽  
Haitao Gan ◽  
Yingle Fan

2020 ◽  
Vol 10 (12) ◽  
pp. 4412
Author(s):  
Ammar Mohsin Butt ◽  
Muhammad Haroon Yousaf ◽  
Fiza Murtaza ◽  
Saima Nazir ◽  
Serestina Viriri ◽  
...  

Human action recognition has gathered significant attention in recent years due to its high demand in various application domains. In this work, we propose a novel codebook generation and hybrid encoding scheme for classification of action videos. The proposed scheme develops a discriminative codebook and a hybrid feature vector by encoding the features extracted from CNNs (convolutional neural networks). We explore different CNN architectures for extracting spatio-temporal features. We employ an agglomerative clustering approach for codebook generation, which intends to combine the advantages of global and class-specific codebooks. We propose a Residual Vector of Locally Aggregated Descriptors (R-VLAD) and fuse it with locality-based coding to form a hybrid feature vector. It provides a compact representation along with high order statistics. We evaluated our work on two publicly available standard benchmark datasets HMDB-51 and UCF-101. The proposed method achieves 72.6% and 96.2% on HMDB51 and UCF101, respectively. We conclude that the proposed scheme is able to boost recognition accuracy for human action recognition.


Sign in / Sign up

Export Citation Format

Share Document