Power distribution control strategy of on-board supercapacitor energy storage system of railway vehicle

Author(s):  
Wang Dewei ◽  
Zhao Kun ◽  
Wang Shenrong ◽  
Yang Zhongping ◽  
You Xiaojie
2021 ◽  
Vol 12 (3) ◽  
pp. 154
Author(s):  
Yu Zhang ◽  
Kai Li ◽  
Shumei Cui ◽  
Yutian Sun

To address the power distribution problem that occurs in hybrid energy storage systems (HESSs) in electric vehicles, a fuzzy control distribution method is proposed in this paper, taking the vehicle demand power; supercapacitor power, PSC;; and lithium battery power, Pbat, as the inputs and the power distribution factor of the supercapacitor as the output to control the power distribution of the composite energy storage system, in addition to dividing the whole working condition into three time scales, namely, long, medium and short. In this study, we conducted a comprehensive analysis and comparison with typical control methods regarding the energy storage element output power, battery state of charge (SOC) change, energy flow diagram and power frequency. The simulation experiment results show that the proposed strategy is more effective in reducing the peak output power of the power battery, improving the effective power utilization rate of HESS and the effective energy utilization rate. In order to further verify the effectiveness of the control strategy, a pure electric bus power system test bench was built based on similar principles, and a representative time period under the driving conditions of the China city bus (CHTC-B) was selected, involving an acceleration process from 30 to 48 s (process 1), a uniform speed process from 636 to 671 s (process 2) and a regenerative braking process from 1290 to 1304 s (process 3), further verifying the effectiveness and feasibility of the proposed control strategy.


Author(s):  
Muhammed Y. Worku

AbstractThis paper proposes an efficient power smoothing control strategy for variable speed grid connected permanent magnet synchronous generator (PMSG) based wind turbine generator (WTG) with supercapacitor energy storage system (SCESS). As WTG installations are increasing, these systems generate a fluctuated output power as a result of varying wind speed and need to have a power smoothing capability to have a smooth output power profile. The optimal size of the SCESS is determined and a controller is proposed and implemented to continuously charge and discharge the SCESS to achieve its objectives. The SCESS is exploited to minimize the short term fluctuation to have a smooth power profile during normal operation. A bi-directional buck boost converter is used to integrate the SCESS with the system. Two back to back connected three level Neutral Point Clamped (NPC) converters are used for the power conversion. The control strategy and the system model have been developed for the NPCs, the buck boost converter and the variable speed WTG system. The Real Time Digital Simulator (RTDS) based results conducted on 2 MW/4 kV PMSG verify the effectiveness and superiority of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document