regenerative braking
Recently Published Documents


TOTAL DOCUMENTS

1192
(FIVE YEARS 378)

H-INDEX

37
(FIVE YEARS 8)

Author(s):  
An Thi Hoai Thu Anh ◽  
Luong Huynh Duc

<span>In operating phases of elevators, accelerating, braking modes occur frequently, so braking energy recuperation of elevators has contributed considerably to decrease the total electric energy consumption for operating elevators in multi-floor buildings. In this paper, the supercapacitor energy storage system is used to recover regenerative braking energy of elevators when they operate down full-load and up no-load, reducing fluctuation of voltage on DC bus as well. Therefore, super-capacitor energy storage system (SCESS) will be parallel with line utility to recuperate regenerative braking energy in braking phase and support energy for acceleration phase. The surplus energy will be stored in the supercapacitors thanks to a DC-DC converter capable of exchanging energy bidirectionally in buck/boost modes, and designing control strategy including two control loops. Inner loop-current loop: controlling charge/discharge process of supercapacitors by current iL complying with operation characteristic of elevator; Outer loop-voltage loop: managing UDC-link at a fixed value. Simulation results with elevator system of the ten-floor building, Hanoi, Vietnam installed SCESS have been verified on MATLAB Simulink, SimPowerSystem with saving energy level about 30%.</span>


2021 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Min Yang ◽  
Tao Wang ◽  
Chunji Guo ◽  
Chris Ellis ◽  
Yuefeng Liao

In this paper, a particular form of flywheel hybrid powertrain, namely, the Integrated Kinetic Energy Recoup Drive (i-KERD) is fully explored and its applications for EVs, HEVs and FCEVs in recent years to show the energy-savings and performance enhancement potential of this innovative powertrain technology. It is shown that the i-KERD is a small highspeed flywheel integrated into an e-CVT, or power-split hybrid drive. Under NEDC or WLTC, typically it can achieve some 40% energy savings and >50% gain in 0–100 kph acceleration due to effective regenerative braking mechanism of the integrated flywheel power system. In addition to its “peak-shaving” capability, the highly-efficient, long-life flywheel power on-board, is able to keep the kinetic energy of the vehicle fully recycled, rather than dissipated during braking. The i-KERD technology has also been applied to urban railway transportation (i.e., underground railway) and off-road heavy construction equipment, where regenerative braking plays a great role on energy efficiency.


2021 ◽  
pp. 129-140
Author(s):  
Jingsheng Yu ◽  
Vladimir Vantsevich
Keyword(s):  

2021 ◽  
pp. 149-163
Author(s):  
A. Sathishkumar ◽  
R. Soundararajan ◽  
T. J. Muthu Vel ◽  
M. B. S. Arjith ◽  
G. Sakthivel

2021 ◽  
Vol 19 (3) ◽  
pp. 82-95
Author(s):  
V. L. Nezevak

The use of regenerative braking by electric rolling stock on DC railways makes it possible to increase the energy efficiency of the transportation process. The effective use of regenerative braking is associated with creation of conditions for receiving energy obtained through it. For these purposes, rectifier-inverter converters and energy absorbing devices are currently used in the traction power supply system.A promising technology that provides an increase in theefficiency of the use of regenerative braking is energy storage, which allows this energy to be used in the future to cover the traction load curve. A feature of the use of regenerative braking on singletrack sections of DC railways with low traffic intensity is the need to use converters or energy absorbing devices. One of the options for increasing the efficiency of recuperation energy use is the adoption of energy storage systems for the own needs of traction substations. The use of this technical solution is advisable on single-track sections with intensive use of regenerative braking, the effectiveness of which is explained through a decrease in power consumption for own needs of the substation from the external grid.The international research allows us to identify the widespread trend towards the application of electricity storage technology in various fields: from renewable energy sources to electric power systems, including transport power supply systems. International practices demonstrate successful implementation of pilot projects of adoption of energy storage systems for solving problems of increasing the efficiency of electric urban and suburban transport, as well as of metro systems.The objective of the work is to assess the energy performance of energy storage systems when using recovered energy for own needs of a traction substation. The study is based on the methods of mathematical and simulation modelling, optimisation, and mathematical statistics.The discussed issues refer to the use of energy storage systems to provide power supply for own needs of DC traction substations. Main issues of operation of storage systems are considered with the help of a substation case study. The features of the recuperation load curve are described to explain the use of hybrid technologies for developing a storage system. The example of the considered traction substation helps to demonstrate the solution to the problem of determining main parameters of the storage system, considering the specifics of operation of electrochemical and electrical modules.


Sign in / Sign up

Export Citation Format

Share Document