A neural network architectural model of visual cortical cells for texture segregation

Author(s):  
G.M. Bisio ◽  
D.D. Caviglia ◽  
G. Indiveri ◽  
L. Raffo ◽  
S.P. Sabatini
2000 ◽  
Vol 522 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Maxim Volgushev ◽  
Trichur R. Vidyasagar ◽  
Marina Chistiakova ◽  
Tagrid Yousef ◽  
Ulf T. Eysel

10.1038/73957 ◽  
2000 ◽  
Vol 3 (4) ◽  
pp. 384-390 ◽  
Author(s):  
Matthew T. Schmolesky ◽  
Youngchang Wang ◽  
Mingliang Pu ◽  
Audie G. Leventhal

1968 ◽  
Vol 198 (1) ◽  
pp. 237-250 ◽  
Author(s):  
F. W. Campbell ◽  
B. G. Cleland ◽  
G. F. Cooper ◽  
Christina Enroth-Cugell

1997 ◽  
Vol 14 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Rosita Siciliano ◽  
Gigliola Fontanesi ◽  
Fiorella Casamenti ◽  
Nicoletta Berardi ◽  
Paola Bagnoli ◽  
...  

AbstractIn the rat, visual cortical cells develop their functional properties during a period termed as critical period, which is included between eye opening, i.e.˘postnatal day (PD) 15, and PD40. The present investigation was aimed at studying the influence of cortical cholinergic afferents from the basal forebrain (BF) on the development of functional properties of visual cortical neurons. At PD15, rats were unilaterally deprived of the cholinergic input to the visual cortex by stereotaxic injections of quisqualic acid in BF cholinergic nuclei projecting to the visual cortex. Cortical cell functional properties, such as ocular dominance, orientation selectivity, receptive-field size, and cell responsiveness were then assessed by extracellular recordings in the visual cortex ipsilateral to the lesioned BF both during the critical period (PD30) and after its end (PD45). After the recording session, the rats were sacrificed and the extent of both cholinergic lesion in BF and cholinergic depletion in the visual cortex was determined. Our results show that lesion of BF cholinergic nuclei transiently alters the ocular dominance of visual cortical cells while it does not affect the other functional properties tested. In particular, in lesioned animals recorded during the critical period, a higher percentage of visual cortical cells was driven by the contralateral eye with respect to normal animals. After the end of the critical period, the ocular dominance distribution of animals with cholinergic deafferentation was not significantly different from that of controls. Our results suggest the possibility that lesions of BF cholinergic neurons performed during postnatal development only transiently interfere with cortical competitive processes.


2005 ◽  
Vol 93 (1) ◽  
pp. 223-236 ◽  
Author(s):  
Jason M. Samonds ◽  
A. B. Bonds

Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N2O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.


Sign in / Sign up

Export Citation Format

Share Document