Postnatal development of functional properties of visual cortical cells in rats with excitotoxic lesions of basal forebrain cholinergic neurons

1997 ◽  
Vol 14 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Rosita Siciliano ◽  
Gigliola Fontanesi ◽  
Fiorella Casamenti ◽  
Nicoletta Berardi ◽  
Paola Bagnoli ◽  
...  

AbstractIn the rat, visual cortical cells develop their functional properties during a period termed as critical period, which is included between eye opening, i.e.˘postnatal day (PD) 15, and PD40. The present investigation was aimed at studying the influence of cortical cholinergic afferents from the basal forebrain (BF) on the development of functional properties of visual cortical neurons. At PD15, rats were unilaterally deprived of the cholinergic input to the visual cortex by stereotaxic injections of quisqualic acid in BF cholinergic nuclei projecting to the visual cortex. Cortical cell functional properties, such as ocular dominance, orientation selectivity, receptive-field size, and cell responsiveness were then assessed by extracellular recordings in the visual cortex ipsilateral to the lesioned BF both during the critical period (PD30) and after its end (PD45). After the recording session, the rats were sacrificed and the extent of both cholinergic lesion in BF and cholinergic depletion in the visual cortex was determined. Our results show that lesion of BF cholinergic nuclei transiently alters the ocular dominance of visual cortical cells while it does not affect the other functional properties tested. In particular, in lesioned animals recorded during the critical period, a higher percentage of visual cortical cells was driven by the contralateral eye with respect to normal animals. After the end of the critical period, the ocular dominance distribution of animals with cholinergic deafferentation was not significantly different from that of controls. Our results suggest the possibility that lesions of BF cholinergic neurons performed during postnatal development only transiently interfere with cortical competitive processes.

1999 ◽  
Vol 16 (6) ◽  
pp. 1015-1028 ◽  
Author(s):  
ROSITA SICILIANO ◽  
FRANCESCO FORNAI ◽  
IRENE BONACCORSI ◽  
LUCIANO DOMENICI ◽  
PAOLA BAGNOLI

Based on previous evidence that acetylcholine (ACh) and noradrenaline (NA) play a permissive role in developmental plasticity in the kitten visual cortex, we reinvestigated this topic in the postnatal visual cortex of rats with normal vision. In rats, the functional properties of visual cortical cells develop gradually between the second and the sixth postnatal week (Fagiolini et al., 1994). Cortical cholinergic depletion, by basal forebrain (BF) lesions at postnatal day (PD) 15 (eye opening), leads to a transient disturbance in the distribution of ocular dominance (Siciliano et al., 1997). In the present study, we investigated the development of visual cortical response properties following cytotoxic lesions of the locus coeruleus (LC) alone or in combination with lesions of cholinergic BF. The main result is that early NA depletion impairs the orientation selectivity of cortical neurons, causes a slight increase of their receptive-field size, and reduces the signal-to-noise ratio of cell responses. Similar effects are obtained following NA depletion in adult animals, although the effects of adult noradrenergic deafferentation are significantly more severe than those obtained after early NA depletion. Additional cholinergic depletion causes an additional transient change in ocular-dominance distribution similarly to that obtained after cholinergic deafferentation alone. Comparisons between depletion of NA on the one hand and depletion of both NA and ACh on the other suggest that the effects of combined deafferentation on the functional properties studied result from simple linear addition of the effects of depleting each afferent system alone.


1984 ◽  
Vol 52 (5) ◽  
pp. 941-960 ◽  
Author(s):  
L. Tong ◽  
R. E. Kalil ◽  
P. D. Spear

Previous experiments have found that neurons in the cat's lateral suprasylvian (LS) visual area of cortex show functional compensation following removal of visual cortical areas 17, 18, and 19 on the day of birth. Correspondingly, an enhanced retino-thalamic pathway to LS cortex develops in these cats. The present experiments investigated the critical periods for these changes. Unilateral lesions of areas 17, 18, and 19 were made in cats ranging in age from 1 day postnatal to 26 wk. When the cats were adult, single-cell recordings were made from LS cortex ipsilateral to the lesion. In addition, transneuronal autoradiographic methods were used to trace the retino-thalamic projections to LS cortex in many of the same animals. Following lesions in 18- and 26-wk-old cats, there is a marked reduction in direction-selective LS cortex cells and an increase in cells that respond best to stationary flashing stimuli. These results are similar to those following visual cortex lesions in adult cats. In contrast, the percentages of cells with these properties are normal following lesions made from 1 day to 12 wk of age. Thus the critical period for development of direction selectivity and greater responses to moving than to stationary flashing stimuli in LS cortex following a visual cortex lesion ends between 12 and 18 wk of age. Following lesions in 26-wk-old cats, there is a decrease in the percentage of cells that respond to the ipsilateral eye, which is similar to results following visual cortex lesions in adult cats. However, ocular dominance is normal following lesions made from 1 day to 18 wk of age. Thus the critical period for development of responses to the ipsilateral eye following a lesion ends between 18 and 26 wk of age. Following visual cortex lesions in 2-, 4-, or 8-wk-old cats, about 30% of the LS cortex cells display orientation selectivity to elongated slits of light. In contrast, few or no cells display this property in normal adult cats, cats with lesions made on the day of birth, or cats with lesions made at 12 wk of age or later. Thus an anomalous property develops for many LS cells, and the critical period for this property begins later (between 1 day and 2 wk) and ends earlier (between 8 and 12 wk) than those for other properties.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 35 ◽  
Author(s):  
TAKAO K. HENSCH ◽  
ELIZABETH M. QUINLAN

AbstractThe shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular ‘brakes’. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.


2015 ◽  
Vol 112 (24) ◽  
pp. E3131-E3140 ◽  
Author(s):  
Xiaojie Huang ◽  
Sophia K. Stodieck ◽  
Bianka Goetze ◽  
Lei Cui ◽  
Man Ho Wong ◽  
...  

During critical periods, all cortical neural circuits are refined to optimize their functional properties. The prevailing notion is that the balance between excitation and inhibition determines the onset and closure of critical periods. In contrast, we show that maturation of silent glutamatergic synapses onto principal neurons was sufficient to govern the duration of the critical period for ocular dominance plasticity in the visual cortex of mice. Specifically, postsynaptic density protein-95 (PSD-95) was absolutely required for experience-dependent maturation of silent synapses, and its absence before the onset of critical periods resulted in lifelong juvenile ocular dominance plasticity. Loss of PSD-95 in the visual cortex after the closure of the critical period reinstated silent synapses, resulting in reopening of juvenile-like ocular dominance plasticity. Additionally, silent synapse-based ocular dominance plasticity was largely independent of the inhibitory tone, whose developmental maturation was independent of PSD-95. Moreover, glutamatergic synaptic transmission onto parvalbumin-positive interneurons was unaltered in PSD-95 KO mice. These findings reveal not only that PSD-95–dependent silent synapse maturation in visual cortical principal neurons terminates the critical period for ocular dominance plasticity but also indicate that, in general, once silent synapses are consolidated in any neural circuit, initial experience-dependent functional optimization and critical periods end.


1996 ◽  
Vol 8 (4) ◽  
pp. 705-730 ◽  
Author(s):  
Zhaoping Li

This paper demonstrates that much of visual motion coding in the primary visual cortex can be understood from a theory of efficient motion coding in a multiscale representation. The theory predicts that cortical cells can have a spectrum of directional indices, be tuned to different directions of motion, and have spatiotemporally separable or inseparable receptive fields (RF). The predictions also include the following correlations between motion coding and spatial, chromatic, and stereo codings: the preferred speed is greater when the cell receptive field size is larger, the color channel prefers lower speed than the luminance channel, and both the optimal speeds and the preferred directions of motion can be different for inputs from different eyes to the same neuron. These predictions agree with experimental observations. In addition, this theory makes predictions that have not been experimentally investigated systematically and provides a testing ground for an efficient multiscale coding framework. These predictions are as follows: (1) if nearby cortical cells of a given preferred orientation and scale prefer opposite directions of motion and have a quadrature RF phase relationship with each other, then they will have the same directional index, (2) a single neuron can have different optimal motion speeds for opposite motion directions of monocular stimuli, and (3) a neuron's ocular dominance may change with motion direction if the neuron prefers opposite directions for inputs from different eyes.


1999 ◽  
Vol 81 (5) ◽  
pp. 2587-2591 ◽  
Author(s):  
Elizabeth B. Roberts ◽  
Ary S. Ramoa

Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. The NMDA subtype of glutamate receptor is known to exhibit marked changes in subunit composition and functional properties during neural development. The prevailing idea is that NMDA receptor–mediated synaptic responses decrease in duration after the peak of cortical plasticity in rodents. Accordingly, it is believed that shortening of the NMDA receptor–mediated current underlies the developmental reduction of ocular dominance plasticity. However, some previous evidence actually suggests that the duration of NMDA receptor currents decreases before the peak of plasticity. In the present study, we have examined the time course of NMDA receptor changes and how they correlate with the critical period of ocular dominance plasticity in the visual cortex of a highly binocular animal, the ferret. The expression of NMDA receptor subunits NR1, NR2A, and NR2B was examined in animals ranging in age from postnatal day 16 to adult using Western blotting. Functional properties of NMDA receptors in layer IV cortical neurons were studied using whole cell patch-clamp techniques in an in vitro slice preparation of ferret primary visual cortex. We observed a remarkable increase in NR1 and NR2A, but not NR2B, expression after eye opening. The NMDA receptor–mediated synaptic currents showed an abrupt decrease in decay time concurrent with the increase in NR2A subunit expression. Importantly, these changes occurred in parallel with increased ocular dominance plasticity reported in the ferret. In conclusion, molecular changes leading to decreased duration of the NMDA receptor excitatory postsynaptic current may be a requirement for the onset, rather than the end, of the critical period of ocular dominance plasticity.


1994 ◽  
Vol 11 (6) ◽  
pp. 1093-1102 ◽  
Author(s):  
Luciano Domenici ◽  
Gigliola Fontanesi ◽  
Antonio Cattaneo ◽  
Paola Bagnoli ◽  
Lamberto Maffei

AbstractRecent investigations have shown that cortical nerve growth factor (NGF) infusions during the critical period inhibit ocular-dominance plasticity in the binocular portion of the rat visual cortex. The mechanisms underlying the effects of NGF on visual cortical plasticity are still unclear. To investigate whether during normal development intracortical and/or extracortical cells possess uptake/transport mechanisms for the neurotrophin, we injected 125I-NGF into the occipital cortex of rats at different postnatal ages. Within the cortex, only a few labelled cells were observed. These cells were confined to the vicinity of the injection site and their number depended on the animal's age at the time of injection. Labelled cells were absent at postnatal day (PD) 10 but could be detected between PD 14 and PD 18. They then decreased in number over the following period and were not detected in adult animals. Outside the cortex, neurons of the lateral geniculate nucleus (LGN) were not observed to take up and retrogradely transport NGF at any age after birth. In contrast, retrogradely labelled neurons were found in the basal forebrain. Labelled cells were first observed here at PD 14 and then increased in number until reaching the adult pattern. Our results show that intrinsic and extrinsic neurons are labelled following intracortical injections of iodinated NGF. In both neuronal populations, the uptake and transport of NGF is present over a period corresponding to the critical period for visual cortical plasticity. These findings suggest that NGF may play a role, both intra and extracortically, in plasticity phenomena.


1985 ◽  
Vol 53 (2) ◽  
pp. 572-589 ◽  
Author(s):  
G. D. Mower ◽  
W. G. Christen

Cats were reared in total darkness from birth until 4-5 mo of age (DR cats, n = 7) or with very brief visual experience (1 or 2 days) during an otherwise similar period of dark rearing [DR(1) cats, n = 3; DR(2) cats, n = 7]. Single-cell recordings were made in area 17 of visual cortex at the end of this rearing period and/or after a subsequent prolonged period of monocular deprivation. Control observations were made in normal cats (n = 3), cats reared with monocular deprivation from birth (n = 4), and cats monocularly deprived after being reared normally until 4 mo of age (n = 2). After rearing cats in total darkness, the majority of visual cortical cells were binocularly driven and the overall distribution of ocular dominance was not different from that of normal cats. Orientation-selective cells were very rare in dark-reared cats. Monocular deprivation imposed after dark rearing resulted in selective development of connections from the open eye. Most cells were responsive only to the open eye and the majority of these were orientation selective. These results were similar to, though less severe than, those found in cats reared with monocular deprivation from birth. Monocular deprivation imposed after 4 mo of normal rearing did not produce selective development of connections from the open eye in terms of either ocular dominance or orientation selectivity. In DR(1) cats visual cortical physiology was degraded in comparison to dark-reared cats after the rearing period. Most cells were binocularly driven but there was a higher frequency of unresponsive cells and a reduced frequency of orientation-selective cells. Subsequent monocular deprivation resulted in a further decrease in the number of binocularly driven cells and an increase in unresponsive cells. However, it did not produce a bias in favor of the open eye in terms of either ocular dominance or orientation selectivity. In DR(2) cats there was a high incidence of unresponsive cells and a marked loss of binocularly driven cells after the rearing period. Subsequent monocular deprivation failed to produce any significant changes.(ABSTRACT TRUNCATED AT 400 WORDS)


2009 ◽  
Vol 2 ◽  
pp. JEN.S2559 ◽  
Author(s):  
Cynthia D. Rittenhouse ◽  
Ania K Majewska

It has long been appreciated that in the visual cortex, particularly within a postnatal critical period for experience-dependent plasticity, the closure of one eye results in a shift in the responsiveness of cortical cells toward the experienced eye. While the functional aspects of this ocular dominance shift have been studied for many decades, their cortical substrates and synaptic mechanisms remain elusive. Nonetheless, it is becoming increasingly clear that ocular dominance plasticity is a complex phenomenon that appears to have an early and a late component. Early during monocular deprivation, deprived eye cortical synapses depress, while later during the deprivation open eye synapses potentiate. Here we review current literature on the cortical mechanisms of activity-dependent plasticity in the visual system during the critical period. These studies shed light on the role of activity in shaping neuronal structure and function in general and can lead to insights regarding how learning is acquired and maintained at the neuronal level during normal and pathological brain development.


1990 ◽  
Vol 4 (6) ◽  
pp. 585-593 ◽  
Author(s):  
Helen McIntosh ◽  
Nigel Daw ◽  
David Parkinson

AbstractGAP-43 levels have been determined by immunoassay in cat visual cortex during postnatal development to test the idea that GAP-43 expression could be related to the duration of the critical period for plasticity. For comparison, GAP-43 levels have also been assayed in primary motor cortex, primary somatosensory cortex, and cerebellum at each age. GAP-43 levels were high in all regions at 5 d (with concentrations ranging from 7−10 ng;/μg protein) and then declined 60−80% by 60 d of age. After 60 d of age, GAP-43 concentrations in each region continued a slow decline to adult values, which ranged from 0.5−2 ng/μg protein. To test for the involvement of GAP-43 in ocular dominance plasticity during the critical period, the effect of visual deprivation on GAP-43 levels was investigated. Monocular deprivation for 2−7 d, ending at either 27 or 35 d of age, had no effect on total membrane levels of GAP-43. The concentrations of membrane-associated GAP-43 prior to 40 d of age correlate with events that occur during postnatal development of the cat visual cortex. However, the slow decline in membrane-associated GAP-43 levels after 40 d of age may be an index of relative plasticity remaining after the peak of the critical period.


Sign in / Sign up

Export Citation Format

Share Document