A logarithmic neural network architecture for unbounded non-linear function approximation

Author(s):  
J.W. Hines
2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Abbas Haider ◽  
Glenn Hawe ◽  
Hui Wang ◽  
Bryan Scotney

AbstractReinforcement learning (RL) problems with continuous states and discrete actions (CSDA) can be found in classic examples such as Cart Pole and Puck World, as well as real world applications such as Market Making. Solutions to CSDA problems typically involve a function approximation (FA) of the mapping from states to actions and can be linear or nonlinear. Linear FAs such as tile-coding (Sutton and Barto in Reinforcement learning, 2nd ed, 2009) suffer from state information loss due to state discretization, whilst non-linear FAs such as DQN (Mnih et al. in Playing atari with deep reinforcement learning, https://arxiv.org/abs/1312.5602, 2013) are practically infeasible in infinitely large state spaces due to their cubic time complexity ($$O(n^3)$$ O ( n 3 ) ). In this paper, we propose a novel, general solution to CSDA problems, called Gaussian distribution based non-linear function approximation (GBNLFA). Experimentation on three CSDA RL problems (Cart Pole, Puck World, Market Marking) demonstrates the superiority of GBNLFA over state-of-the-art FAs, namely tile-coding and DQN. In particular, GBNLFA resolves the state information loss problem with linear FAs and provides an asymptotically faster algorithm (O(n)) than linear FAs ($$O(n^2)$$ O ( n 2 ) ) and neural network based nonlinear FAs ($$O(n^3)$$ O ( n 3 ) ).


Sign in / Sign up

Export Citation Format

Share Document