Spectrum Allocation Algorithm for Satellite Elastic Optical Network Based on Spectrum Resource Assessment Set

Author(s):  
Rong Zhou ◽  
Qi Zhang ◽  
Ying Tao ◽  
Dong Chen ◽  
Mai Yang ◽  
...  
2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Li ◽  
Zhai Ya-Fang ◽  
Li Hong-Jie

AbstractWith the rapid development of mobile Internet, high-definition video and cloud computing, users’ bandwidth demands are not only larger and larger but also more and more diverse. To solve this problem, there searchers put forward the concept of elastic optical network (EON). EON adopts the transmission mode of elastic grid, which can allocate spectrum resources flexibly and meet high bandwidth and diversity requirements at the same time. Routing and spectrum allocation (RSA) is an important issue in EON. In this paper, we present a heuristic algorithm named constrained-lower-indexed-block (CLIB) allocation algorithm for the RSA problem. The algorithm is based on the K candidate paths. When there are available spectrum blocks on multiple candidate paths, if the increase of the path length does not exceed a given threshold, the lower index spectrum would be selected for the connection request on a longer path. The aim of the algorithm is to concentrate the occupied frequency slices on one side of the spectrum and leave another side of the spectrum to the later arrived connection requests as much as possible, to reduce the blocking probability of connection requests. Simulation results show that comparing with the first-last-fit and hybrid grouping algorithms, the CLIB algorithm can reduce the blocking probability of connection requests.


2019 ◽  
Vol 41 (1) ◽  
pp. 73-82
Author(s):  
Jijun Zhao ◽  
Yuehuan Xu ◽  
Danping Ren ◽  
Jinhua Hu

Abstract To fully utilize the existing optical network resource, the dynamic traffic grooming technology, which could efficiently multiplex many low-speed services arriving dynamically onto high-capacity optical channels, has been studied extensively and used widely. In this article, the problem of dynamic traffic grooming in joint optimization of IP over elastic optical network (EON) is studied. This problem consists of three sub-problems at two layers: the routing problem at the IP-layer (IPR), the routing, modulation level (RML), and the spectrum allocation (SA) problems at the optical layers. We proposed a novel topology-integration and adaptive-modulation based in cross-layer routing spectrum allocation (CL-RSA) algorithm, which follows a multi-cost approach that solves the IPR, the RML, and the SA problems jointly. The most important features of the proposed algorithm are merging physical topology with virtual topology and using the minimum-weight preferred method for route selection. Meanwhile, the effect of physical-layer impairments (PLI) on signal transmission is considered. In addition, the adaptive modulation scheme is used to allocate the spectrum resource. The simulation results show that the algorithm can effectively improve the spectrum resource utilization and reduce the network blocking probability compared to other algorithms in various network conditions, especially in the high load condition effectively.


2017 ◽  
Vol 63 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Edyta Biernacka ◽  
Jerzy Domżał ◽  
Robert Wójcik

Abstract The introduction of flexible frequency grids and advanced modulation techniques to optical transmission, namely an elastic optical network, requires new routing and spectrum allocation techniques. In this paper, we investigate dynamic two-step routing and spectrum allocation (RSA) methods for elastic optical networks. K-shortest path-based methods as well as spectrum allocation methods are analysed and discussed. Experimental verification of the investigated techniques is provided using simulation software. Simulation results present effectiveness of routing and spectrum allocation methods for analyzed networks using requested bandwidth of connections. Moreover, performance of shortest path first methods improves considerably when a number of candidate paths increases in the UBN24 topology.


Author(s):  
Shahzad Alam ◽  
Muhammad Umar Masood ◽  
Ihtesham Khan ◽  
Arsalan Ahmad ◽  
Salman Ghafoor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document