Face and eye detection in images using skin color segmentation and circular hough transform

Author(s):  
Muhammad Affan Zia ◽  
Umer Ansari ◽  
Mohsin Jamil ◽  
Omer Gillani ◽  
Yasar Ayaz
2011 ◽  
Vol 225-226 ◽  
pp. 437-441
Author(s):  
Jing Zhang ◽  
You Li

Nowadays, face detection and recognition have gained importance in security and information access. In this paper, an efficient method of face detection based on skin color segmentation and Support Vector Machine(SVM) is proposed. Firstly, segmenting image using color model to filter candidate faces roughly; And then Eye-analogue segments at a given scale are discovered by finding regions which are darker than their neighborhoods to filter candidate faces farther; at the end, SVM classifier is used to detect face feature in the test image, SVM has great performance in classification task. Our tests in this paper are based on MIT face database. The experimental results demonstrate that the proposed method is encouraging with a successful detection rate.


2015 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Rocky Yefrenes Dillak

Sistem biometrika adalah suatu sistem pengenalan diri menggunakan bagian tubuh atau perilaku manusia seperti sidik jari, telapak tangan, telinga, retina, iris mata, wajah, suhu tubuh, tanda tangan, dll. Iris mata merupakan salah satu biometrika yang sangat stabil, handal, akurat dan merupakan metode autentikasi biometrika tercepat  oleh karena itu merupakan suatu topik penelitian yang sangat diminati oleh banyak peneliti. Penelitian ini bertujuan untuk mengembangkan suatu metode yang dapat digunakan untuk mengidentifikasi secara otomatis seseorang berdasarkan citra iris mata miliknya menggunakan jaringan syaraf tiruan levenberg-marquardt. Penelitian ini menggunakan metode deteksi tepi cany dan circular hough transform untuk segmentasi wilayah iris yang terletak diantara pupil dan sclera serta metode ekstraksi ciri gray level cooccurence matrix (GLCM) yang digunakan untuk ekstraksi ciri. Ciri-ciri tersebut adalah maximum probability, correlation, contrast, energy, homogeneity, dan entropy. Ciri-ciri tersebut kemudian dilatih menggunakan jaringan syaraf tiruan dengan aturan pembelajaran levenberg–marquardt algorithm untuk mengidentifikasi seseorang berdasarkan citra irisnya. Penelitian ini menggunakan 150 data citra iris yang masing-masing terbagi atas 100 data citra iris untuk pelatihan dan 50 data citra iris  untuk pengujian. Berdasarkan hasil pengujian yang dilakukan diperoleh correct recognition rate (CRR) sebesar 99.98%  yang menunjukkan bahwa metode ini dapat digunakan untuk mengidentifikasi secara otomatis seseorang berdasarkan citra iris mata miliknya.


2014 ◽  
Vol 85 (14) ◽  
pp. 29-34
Author(s):  
Sabiha Sultana ◽  
Md. Saiful Islam ◽  
Md. Golam Moazzam

Sign in / Sign up

Export Citation Format

Share Document