gray level
Recently Published Documents


TOTAL DOCUMENTS

1854
(FIVE YEARS 447)

H-INDEX

54
(FIVE YEARS 7)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 195
Author(s):  
Małgorzata Domino ◽  
Marta Borowska ◽  
Anna Trojakowska ◽  
Natalia Kozłowska ◽  
Łukasz Zdrojkowski ◽  
...  

Appropriate matching of rider–horse sizes is becoming an increasingly important issue of riding horses’ care, as the human population becomes heavier. Recently, infrared thermography (IRT) was considered to be effective in differing the effect of 10.6% and 21.3% of the rider:horse bodyweight ratio, but not 10.1% and 15.3%. As IRT images contain many pixels reflecting the complexity of the body’s surface, the pixel relations were assessed by image texture analysis using histogram statistics (HS), gray-level run-length matrix (GLRLM), and gray level co-occurrence matrix (GLCM) approaches. The study aimed to determine differences in texture features of thermal images under the impact of 10–12%, >12 ≤15%, >15 <18% rider:horse bodyweight ratios, respectively. Twelve horses were ridden by each of six riders assigned to light (L), moderate (M), and heavy (H) groups. Thermal images were taken pre- and post-standard exercise and underwent conventional and texture analysis. Texture analysis required image decomposition into red, green, and blue components. Among 372 returned features, 95 HS features, 48 GLRLM features, and 96 GLCH features differed dependent on exercise; whereas 29 HS features, 16 GLRLM features, and 30 GLCH features differed dependent on bodyweight ratio. Contrary to conventional thermal features, the texture heterogeneity measures, InvDefMom, SumEntrp, Entropy, DifVarnc, and DifEntrp, expressed consistent measurable differences when the red component was considered.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Chie Tsuruta ◽  
Kenji Hirata ◽  
Kohsuke Kudo ◽  
Naoya Masumori ◽  
Masamitsu Hatakenaka

Abstract Background We investigated the correlation between texture features extracted from apparent diffusion coefficient (ADC) maps or diffusion-weighted images (DWIs), and grade group (GG) in the prostate peripheral zone (PZ) and transition zone (TZ), and assessed reliability in repeated examinations. Methods Patients underwent 3-T pelvic magnetic resonance imaging (MRI) before radical prostatectomy with repeated DWI using b-values of 0, 100, 1,000, and 1,500 s/mm2. Region of interest (ROI) for cancer was assigned to the first and second DWI acquisition separately. Texture features of ROIs were extracted from comma-separated values (CSV) data of ADC maps generated from several sets of two b-value combinations and DWIs, and correlation with GG, discrimination ability between GG of 1–2 versus 3–5, and data repeatability were evaluated in PZ and TZ. Results Forty-four patients with 49 prostate cancers met the eligibility criteria. In PZ, ADC 10% and 25% based on ADC map of two b-value combinations of 100 and 1,500 s/mm2 and 10% based on ADC map with b-value of 0 and 1,500 s/mm2 showed significant correlation with GG, acceptable discrimination ability, and good repeatability. In TZ, higher-order texture feature of busyness extracted from ADC map of 100 and 1,500 s/mm2, and high gray-level run emphasis, short-run high gray-level emphasis, and high gray-level zone emphasis from DWI with b-value of 100 s/mm2 demonstrated significant correlation, excellent discrimination ability, but moderate repeatability. Conclusions Some DWI-related features showed significant correlation with GG, acceptable to excellent discrimination ability, and moderate to good data repeatability in prostate cancer, and differed between PZ and TZ.


Informatics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Vidhya V ◽  
U. Raghavendra ◽  
Anjan Gudigar ◽  
Praneet Kasula ◽  
Yashas Chakole ◽  
...  

Traumatic Brain Injury (TBI) is a devastating and life-threatening medical condition that can result in long-term physical and mental disabilities and even death. Early and accurate detection of Intracranial Hemorrhage (ICH) in TBI is crucial for analysis and treatment, as the condition can deteriorate significantly with time. Hence, a rapid, reliable, and cost-effective computer-aided approach that can initially capture the hematoma features is highly relevant for real-time clinical diagnostics. In this study, the Gray Level Occurrence Matrix (GLCM), the Gray Level Run Length Matrix (GLRLM), and Hu moments are used to generate the texture features. The best set of discriminating features are obtained using various meta-heuristic algorithms, and these optimal features are subjected to different classifiers. The synthetic samples are generated using ADASYN to compensate for the data imbalance. The proposed CAD system attained 95.74% accuracy, 96.93% sensitivity, and 94.67% specificity using statistical and GLRLM features along with KNN classifier. Thus, the developed automated system can enhance the accuracy of hematoma detection, aid clinicians in the fast interpretation of CT images, and streamline triage workflow.


2022 ◽  
Vol 15 ◽  
Author(s):  
Zhanglei Ouyang ◽  
Shujun Zhao ◽  
Zhaoping Cheng ◽  
Yanhua Duan ◽  
Zixiang Chen ◽  
...  

Purpose: This study aims to explore the impact of adding texture features in dynamic positron emission tomography (PET) reconstruction of imaging results.Methods: We have improved a reconstruction method that combines radiological dual texture features. In this method, multiple short time frames are added to obtain composite frames, and the image reconstructed by composite frames is used as the prior image. We extract texture features from prior images by using the gray level-gradient cooccurrence matrix (GGCM) and gray-level run length matrix (GLRLM). The prior information contains the intensity of the prior image, the inverse difference moment of the GGCM and the long-run low gray-level emphasis of the GLRLM.Results: The computer simulation results show that, compared with the traditional maximum likelihood, the proposed method obtains a higher signal-to-noise ratio (SNR) in the image obtained by dynamic PET reconstruction. Compared with similar methods, the proposed algorithm has a better normalized mean squared error (NMSE) and contrast recovery coefficient (CRC) at the tumor in the reconstructed image. Simulation studies on clinical patient images show that this method is also more accurate for reconstructing high-uptake lesions.Conclusion: By adding texture features to dynamic PET reconstruction, the reconstructed images are more accurate at the tumor.


2022 ◽  
Vol 11 ◽  
Author(s):  
Lu Qiu ◽  
Xiuping Zhang ◽  
Haixia Mao ◽  
Xiangming Fang ◽  
Wei Ding ◽  
...  

ObjectiveTo investigative the diagnostic performance of the morphological model, radiomics model, and combined model in differentiating invasive adenocarcinomas (IACs) from minimally invasive adenocarcinomas (MIAs).MethodsThis study retrospectively involved 307 patients who underwent chest computed tomography (CT) examination and presented as subsolid pulmonary nodules whose pathological findings were MIAs or IACs from January 2010 to May 2018. These patients were randomly assigned to training and validation groups in a ratio of 4:1 for 10 times. Eighteen categories of morphological features of pulmonary nodules including internal and surrounding structure were labeled. The following radiomics features are extracted: first-order features, shape-based features, gray-level co-occurrence matrix (GLCM) features, gray-level size zone matrix (GLSZM) features, gray-level run length matrix (GLRLM) features, and gray-level dependence matrix (GLDM) features. The chi-square test and F1 test selected morphology features, and LASSO selected radiomics features. Logistic regression was used to establish models. Receiver operating characteristic (ROC) curves evaluated the effectiveness, and Delong analysis compared ROC statistic difference among three models.ResultsIn validation cohorts, areas under the curve (AUC) of the morphological model, radiomics model, and combined model of distinguishing MIAs from IACs were 0.88, 0.87, and 0.89; the sensitivity (SE) was 0.68, 0.81, and 0.83; and the specificity (SP) was 0.93, 0.79, and 0.87. There was no statistically significant difference in AUC between three models (p &gt; 0.05).ConclusionThe morphological model, radiomics model, and combined model all have a high efficiency in the differentiation between MIAs and IACs and have potential to provide non-invasive assistant information for clinical decision-making.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012022
Author(s):  
Junhua Wu ◽  
Tangliang Kuang ◽  
Fangyuan Fu ◽  
Jiahao Li

Abstract In order to quantificationally describe the soil cracks due to dry-wet cycles, the concept of gray level entropy is applied according to the physical significance of the information entropy to represent various shapes of cracks. Then a piece of simple and easy-to-use equipment for taking photos is used to monitor and record the crack propagation. A grayscale image and the corresponding gray level entropy are obtained automatically by a program. Test results showed that gray level entropy can quantificationally describe the shape of cracks reasonably well and evaluate the degree of crack development effectively.


Author(s):  
Gulfeshan Parween

Abstract: In this paper, we present a scheme to develop to complete OCR system for printed text English Alphabet of Uppercase of different font and of different sizes so that we can use this system in Banking, Corporate, Legal industry and so on. OCR system consists of different modules like preprocessing, segmentation, feature extraction and recognition. In preprocessing step it is expected to include image gray level conversion, binary conversion etc. After finding out the feature of the segmented characters artificial neural network and can be used for Character Recognition purpose. Efforts have been made to improve the performance of character recognition using artificial neural network techniques. The proposed OCR system is capable of accepting printed document images from a file and implemented using MATLAB R2014a version. Key words: OCR, Printed text, Barcode recognition


SPERMOVA ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 115-123
Author(s):  
Hernán Cucho ◽  
◽  
Olger Puelles ◽  
Aydee Meza ◽  
Darwin Urquizo ◽  
...  

The aim of the study was to determine the morphological and morphometric characteristics of the vicuña sperm (Vicugna vicugna), looking for possible subpopulations in its structure. Semen was collected by electroejaculation method from three adult male vicuñas weighing 50.33 ± 2.52 kg, once per animal. The volume, color and concentration, sperm morphology and morphometry were determined. The samples for the analysis of sperm morphology and morphometry were stained with Hemacolor®, and analyzed using the CASA-Morph, Integrated Semen Analysis System (ISAS®v1). Five forms of the vicuña sperm head were distinguished: normal, piriform, long, short and rounded. The morphometric parameters determined were the length, width, area, perimeter, ellipticity, elongation, regularity and rugosity of the vicuña sperm head, percentage of acrosome, head gray level, as well as the width, area, distance and angle of insertion of midpiece of the sperm. In relation to morphology, significant differences (P <0.05) were found in the percentage distribution of head shapes, with the normal shape (55.7%) being the majority and different from the other shapes. Significant differences (P <0.05) were found between animals in the morphometric variables of head, percentage of acrosome, ellipticity, rugosity, elongation and gray level; while the variables of the midpiece and regularity did not show differences (P> 0.05). The morphometric variables were distributed in four main components (PCA) called elongation, area, circularity and midpiece width, which explained 84.59% of the total variance. The cluster analysis determined five subpopulations (SP): SP1 grouped small cells of low length, width and area (18.8%); SP2 of sperm of large size, both in area and width of the head (17.38%); SP3 of rounded cells with high values of percentage of acrosome and head gray level (24.04%); SP4 of spermatozoa of intermediate size and elongated, with greater ellipticities and elongation (23.61%); and SP5 of cells of intermediate size and short, with low values of area and length (16.71%).


Author(s):  
Ghous Bakhsh Narejo ◽  
Ayesha Amir Siddiqi ◽  
Adnan Hashmi

This study presents a novel liver disease classification method by applying pattern recognition technique to automatically segmented liver from the images of computed tomographic (CT) scans. The methodology comprises of disease classification by the extraction of textural features from focal liver region bearing tumors. Two types of liver textures are investigated in this study for classification accuracy judgement. First, original liver texture is considered for feature extraction. Second, liver is used for feature extraction. The CT image dataset comprises 308 liver samples with 193 samples of malignant tumor and 115 samples of benign tumor. The entire liver tissue bearing tumor is segmented from the CT image automatically in the pre-processing stage using fuzzy transformation function and morphological processing. Four sets of textural feature matrices are applied to the liver for feature extraction. Gray level co-occurrence matrix (GLCM), standard deviation gray level co-occurrence matrix (SDGLCM), seven-moment matrix (7MM) and seven-moment gray level co-occurrence matrix (7MGLCM) are the combinational feature matrices applied to classify the liver as malignant or benign using support vector machines (SVMs). The best classification accuracy is achieved for original liver texture by 7MGLCM, which is 97% with AUC[Formula: see text]0.99 for training dataset and 97.8% with AUC[Formula: see text]1 for test dataset.


Sign in / Sign up

Export Citation Format

Share Document