The 500kV Oil-filled Submarine Cable Temperature Monitoring System Based on BOTDA Distributed Optical Fiber Sensing Technology

Author(s):  
Yu Chen ◽  
Shuang Wang ◽  
Yi Hao ◽  
Kai Yao ◽  
Hanzhi Li ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Huaizhi Su ◽  
Meng Yang ◽  
Kunpeng Zhao ◽  
Zhiping Wen

Distributed temperature sensing (DTS) provides an important technology support for the earth-rock junctions of dike projects (ERJD), which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA) with principal component analysis (PCA). The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.


Author(s):  
Lu-Jun Cui ◽  
Yan-Long Cao ◽  
Hong-Hong Guo ◽  
Shi-Rui Guo ◽  
Wenhang Zeng ◽  
...  

In the process of long-distance transportation of different gas, the remote pipeline plays an irreplaceable role in energy transmission. When the pipeline is laid in remote areas for a long distance, it is easy to be influenced by geological disasters and complex working conditions, which may lead to corrosion and leakage. therefore, it is necessary to conduct pipeline gas real-time safety monitoring. An optical fiber gas leakage synchronous monitoring system was proposed and demonstrated based on distributed optical sensing technology for simultaneous multi-gas measurements. In this study, we discuss that the principle of multi-gas leakage synchronous monitoring system is investigated and then validated by the theoretical simulation experiments. Furthermore, gas concentration and leakage location discrimination tests are also conducted in laboratory. The experimental results show that the output intensity values increased obviously along with the gas concentration changes, and the response time of the sensor system is about 40 seconds, and it’s concluded that the multi-gas leakage synchronous monitoring system based on distributed optical fiber sensing technology exhibited good sensing and location discrimination performance.


Sensor Review ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 350-360
Author(s):  
Xiao Fang ◽  
Yajie Zeng ◽  
Feng Xiong ◽  
Jiang Chen ◽  
Fei Cheng

Purpose Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed optical fiber sensing technology based on the temperature tracing method has been paid more attention due to its unique advantages of high sensitivity, good stability and high resolution. The purpose of this paper is to make a review of the existing related research, so as to facilitate the later scholars to understand and further study more systematically. Design/methodology/approach In this paper, three kinds of commonly used distributed fiber temperature measurement technologies are introduced. Based on the working principle, monitoring system, theoretical analysis, experimental research and engineering application of the fiber seepage monitoring technology, the present situation of dam seepage monitoring based on distributed fiber is reviewed in detail and their advantages and disadvantages are compared. Findings The thermal monitoring technology of seepage measurement depends on the accuracy of optical fiber temperature measurement (including the accuracy of the system and the rationality of the discrimination method), the correct installation of optical fiber and the quantitative analysis of temperature data. The accuracy of the current monitoring system can basically meet the existing measurement requirements, but the correct installation of optical fiber and the calibration of temperature data need to be further studied for different discrimination methods, and this field has great research value. Originality/value At present, there are many applications and research studies of optical fiber sensing in the field of structural health monitoring, and there are also reviews of related aspects. However, there is little or no review only in the field of seepage monitoring. This paper summarizes the research and application of optical fiber sensing in the field of seepage monitoring. The possibility of the gradient method to find its new prospect with the development of monitoring systems and the improvement of temperature resolution is discussed. The idea of extending the seepage monitoring method based on distributed optical fiber thermal monitoring technology to other monitoring fields is also given in the paper.


2019 ◽  
Vol 9 (12) ◽  
pp. 2435 ◽  
Author(s):  
Lei Gao ◽  
Chuan Han ◽  
Zhongquan Xu ◽  
Yingjie Jin ◽  
Jianqiang Yan

In order to study the deformation of bored pile, it is necessary to monitor the strain of the pile. The distributed optical fiber sensing technology realizes the integration of sensing and transmission, which is incomparable with traditional point monitoring method. In this paper, the Brillouin optical time domain reflectometer (BOTDR) distributed optical fiber sensing technology is used to monitor the deformation of the bored pile. The raw data monitored by BOTDR is processed by the wavelet basis function, that can perform noise removal processing. Three different methods of noise removal are chosen. Through the processing, the db5 wavelet is used to decompose the deformation data of bored pile monitored by BOTDR into two layers. The decomposed high-frequency signal is denoised by the Stein-based unbiased risk threshold, rigrsure. The decomposed data is smoothed by the translational mean method, and the final data after denoising and smoothing processing is real and reliable. The results of this study will provide data support for the deformation characteristics of bored pile, and also show the advantages of distributed optical fiber sensing technology.


2014 ◽  
Vol 610 ◽  
pp. 199-204 ◽  
Author(s):  
Xiao Fei Zhang ◽  
Zhong Hu Lv ◽  
Xian Wei Meng ◽  
Fan Jiang ◽  
Qing Zhang

Nowadays, fiber optic technology has been used in sensing. Using the distributed optical fiber sensing technology in the landslide monitoring, the linear strain distribution information of the whole landslide can be obtained, and adopting the Fiber Bragg Grating sensing technology in the landslide monitoring, the key pot strain and displacement information can be gained. This paper firstly reviews the basic principle of optical fiber sensing, and then describes the optical fiber sensing real-time monitoring system by combining with FBG technology, BOTDR technology, database technology and web server technology, and finally presents a field application experiment using the real-time monitoring system in Ripley landslide in Canada. The experiment indicated that the real-time monitoring system can be realized real-time monitoring of FBG and BOTDR for landslide, and the experience can be extended to other landslide.


Sign in / Sign up

Export Citation Format

Share Document