scholarly journals Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Huaizhi Su ◽  
Meng Yang ◽  
Kunpeng Zhao ◽  
Zhiping Wen

Distributed temperature sensing (DTS) provides an important technology support for the earth-rock junctions of dike projects (ERJD), which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA) with principal component analysis (PCA). The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.

2019 ◽  
Vol 9 (12) ◽  
pp. 2435 ◽  
Author(s):  
Lei Gao ◽  
Chuan Han ◽  
Zhongquan Xu ◽  
Yingjie Jin ◽  
Jianqiang Yan

In order to study the deformation of bored pile, it is necessary to monitor the strain of the pile. The distributed optical fiber sensing technology realizes the integration of sensing and transmission, which is incomparable with traditional point monitoring method. In this paper, the Brillouin optical time domain reflectometer (BOTDR) distributed optical fiber sensing technology is used to monitor the deformation of the bored pile. The raw data monitored by BOTDR is processed by the wavelet basis function, that can perform noise removal processing. Three different methods of noise removal are chosen. Through the processing, the db5 wavelet is used to decompose the deformation data of bored pile monitored by BOTDR into two layers. The decomposed high-frequency signal is denoised by the Stein-based unbiased risk threshold, rigrsure. The decomposed data is smoothed by the translational mean method, and the final data after denoising and smoothing processing is real and reliable. The results of this study will provide data support for the deformation characteristics of bored pile, and also show the advantages of distributed optical fiber sensing technology.


Measurement ◽  
2018 ◽  
Vol 122 ◽  
pp. 57-65 ◽  
Author(s):  
Liang Ren ◽  
Tao Jiang ◽  
Zi-guang Jia ◽  
Dong-sheng Li ◽  
Chao-lin Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document