scholarly journals Cooperative Game Theory based Multi-UAV Consensus-based Formation Control

Author(s):  
Liwei Jiang ◽  
Felipe Gonzalez ◽  
Aaron McFadyen
2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Qingjie Zhang ◽  
Jianwu Tao ◽  
Fei Yu ◽  
Yingzhen Li ◽  
Hongchang Sun ◽  
...  

By considering the complex networks, the cooperative game based optimal consensus (CGOC) algorithm is proposed to solve the multi-UAV rendezvous problem in the mission area. Firstly, the mathematical description of the rendezvous problem is established, and the solving framework is provided based on the coordination variables and coordination function. It can decrease the transmission of the redundant information and reduce the influence of the limited network on the task. Secondly, the CGOC algorithm is presented for the UAVs in distributed cooperative manner, which can minimize the overall cost of the multi-UAV system. The CGOC control problem and the corresponding solving protocol are given by using the cooperative game theory and sensitivity parameter method. Then, the CGOC method of multi-UAV rendezvous problem is proposed, which focuses on the trajectory control of the platform rather than the path planning. Simulation results are given to demonstrate the effectiveness of the proposed CGOC method under complex network conditions and the benefit on the overall optimality and dynamic response.


Author(s):  
Cunbin Li ◽  
Ding Liu ◽  
Yi Wang ◽  
Chunyan Liang

AbstractAdvanced grid technology represented by smart grid and energy internet is the core feature of the next-generation power grid. The next-generation power grid will be a large-scale cyber-physical system (CPS), which will have a higher level of risk management due to its flexibility in sensing and control. This paper explains the methods and results of a study on grid CPS’s behavior after risk. Firstly, a behavior model based on hybrid automata is built to simulate grid CPS’s risk decisions. Then, a GCPS risk transfer model based on cooperative game theory is built. The model allows decisions to ignore complex network structures. On this basis, a modified applicant-proposing algorithm to achieve risk optimum is proposed. The risk management model proposed in this paper can provide references for power generation and transmission decision after risk as well as risk aversion, an empirical study in north China verifies its validity.


2021 ◽  
Vol 145 ◽  
pp. 111056
Author(s):  
Andrey Churkin ◽  
Janusz Bialek ◽  
David Pozo ◽  
Enzo Sauma ◽  
Nikolay Korgin

2021 ◽  
Vol 50 (1) ◽  
pp. 78-85
Author(s):  
Ester Livshits ◽  
Leopoldo Bertossi ◽  
Benny Kimelfeld ◽  
Moshe Sebag

Database tuples can be seen as players in the game of jointly realizing the answer to a query. Some tuples may contribute more than others to the outcome, which can be a binary value in the case of a Boolean query, a number for a numerical aggregate query, and so on. To quantify the contributions of tuples, we use the Shapley value that was introduced in cooperative game theory and has found applications in a plethora of domains. Specifically, the Shapley value of an individual tuple quantifies its contribution to the query. We investigate the applicability of the Shapley value in this setting, as well as the computational aspects of its calculation in terms of complexity, algorithms, and approximation.


Sign in / Sign up

Export Citation Format

Share Document