Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering

Author(s):  
Te-Li Su ◽  
Le-Shin Chang ◽  
Fu-Chen Kung
2007 ◽  
Vol 2007 ◽  
pp. 1-6 ◽  
Author(s):  
Bekir Karlık ◽  
Kemal Yüksek

The aim of this study is to develop a novel fuzzy clustering neural network (FCNN) algorithm as pattern classifiers for real-time odor recognition system. In this type of FCNN, the input neurons activations are derived through fuzzy c mean clustering of the input data, so that the neural system could deal with the statistics of the measurement error directly. Then the performance of FCNN network is compared with the other network which is well-known algorithm, named multilayer perceptron (MLP), for the same odor recognition system. Experimental results show that both FCNN and MLP provided high recognition probability in determining various learn categories of odors, however, the FCNN neural system has better ability to recognize odors more than the MLP network.


1997 ◽  
Vol 51 (12) ◽  
pp. 1868-1879 ◽  
Author(s):  
Nelson W. Daniel ◽  
Ian R. Lewis ◽  
Peter R. Griffiths

The implementation of neural, fuzzy, and statistical models for the unsupervised pattern recognition and clustering of Fourier transform (FT)-Raman spectra of explosive materials is reported. In this work a statistical pattern recognition technique based on the concept of nearest-neighbors classification is described. Also the first application of both fuzzy clustering and a fuzzified Kohonen clustering network for the analysis of vibrational spectra is presented. Fuzzified Kohonen networks were found to perform as well as or better than the traditional fuzzy clustering technique. The unsupervised pattern recognition techniques, without the need for a priori structural information, yielded results which were comparable with those obtained by using a combination of a priori structural information and manual group-frequency analysis. This work demonstrates, via the use of a nitro-containing explosive data set, the utility of unsupervised pattern recognition techniques for the clustering, novelty detection, prototyping, and feature mapping of Raman spectra. The results of this work are directly applicable to the characterization of Raman spectra of explosives recorded with fiber-optic sampling.


Sign in / Sign up

Export Citation Format

Share Document